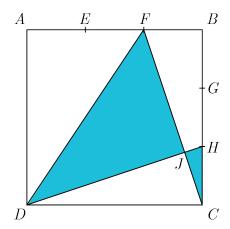


Problem of the Week Problem E and Solution A Fraction to Find

Problem

In square ABCD, points E and F lie on AB such that AE = EF = FB = 10. Similarly, points G and H lie on BC such that BG = GH = HC = 10. Let J be the intersection of line segments DH and CF. The areas of $\triangle DFJ$ and $\triangle CJH$ are then shaded.

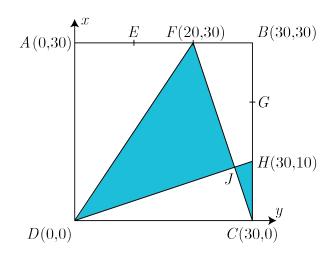


Determine the fraction of the area of square ABCD that is shaded.

Solution

Solution 1

In this solution, we set square ABCD on the Cartesian grid with vertex D at the origin. Then, since AE = EF = FB = 10, it follows that AB = 30, so the side length of ABCD is 30. Thus, the coordinates of the vertices are A(0,30), B(30,30), C(30,0), and D(0,0). Since AF = 20 and AF is parallel to the x-axis, it follows that the coordinates of F are (20,30). Since HC = 10 and HC is parallel to the y-axis, it follows that the coordinates of H are (30,10).



Now we will find the coordinates of J by finding the point of intersection of the lines through DH and CF.

The line through DH has slope $\frac{10}{30} = \frac{1}{3}$ and y-intercept 0. Thus, its equation is $y = \frac{1}{3}x$.

The line through CF has slope $\frac{0-30}{30-20} = \frac{-30}{10} = -3$. To determine its y-intercept we substitute (30,0) into y = -3x + b. This gives 0 = -3(30) + b, so b = 90. Thus, its equation is y = -3x + 90.

We set these two equations equal to each other to solve for the point of intersection.

$$\frac{1}{3}x = -3x + 90$$

$$\frac{10}{3}x = 90$$

$$x = 90 \times \frac{3}{10} = 27$$

Thus, $y = \frac{1}{3}(27) = 9$, so the coordinates of J are (27, 9).

Since the slope of the line through DH is $\frac{1}{3}$ and the slope of the line through CF is -3, and these are negative reciprocals, it follows that these lines are perpendicular. Thus, both $\triangle DFJ$ and $\triangle CJH$ are right-angled triangles. So to determine the area of $\triangle DFJ$ we will consider the base to be DJ and the height to be JF. Using the Pythagorean theorem,

$$DJ = \sqrt{27^2 + 9^2}$$

$$= \sqrt{810}$$

$$= 9\sqrt{10}$$

$$JF = \sqrt{(27 - 20)^2 + (9 - 30)^2}$$

$$= \sqrt{7^2 + (-21)^2}$$

$$= \sqrt{490} = 7\sqrt{10}$$

Thus,

Area
$$\triangle DFJ = \frac{1}{2} \times DJ \times JF = \frac{1}{2} \times 9\sqrt{10} \times 7\sqrt{10} = \frac{1}{2} \times 63 \times 10 = 315$$

To determine the area of $\triangle CJH$ we will consider the base to be CH=10. To find the height, we drop a perpendicular from J to CH and call this point K. Then the height is JK=30-27=3. Thus,

Area
$$\triangle CJH = \frac{1}{2} \times CH \times JK = \frac{1}{2} \times 10 \times 3 = 15$$

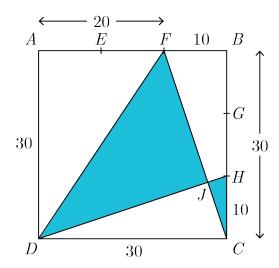
Then the total area shaded is 315 + 15 = 330.

The area of square ABCD is $30 \times 30 = 900$. Therefore, the fraction of this area that is shaded is $\frac{330}{900} = \frac{11}{30}$.

Solution 2

In this solution we use similar triangles to calculate the area indirectly.

Since AE = EF = FB = 10, and ABCD is a square, it follows that AB = BC = CD = AD = 30. Since AE = EF = 10 it follows that AF = 20.



We can then determine the areas of right-angled triangles $\triangle DAF$ and $\triangle CBF$. The area of $\triangle DAF$ is $\frac{1}{2} \times 30 \times 20 = 300$ and the area of $\triangle CBF$ is $\frac{1}{2} \times 30 \times 10 = 150$.

Next we determine the area of $\triangle CJH$. First we notice that $\triangle CBF$ and $\triangle DCH$ are congruent, and $\triangle DCH$ has been rotated by 90°. Thus, $DH \perp CF$. Next we notice that $\angle HCJ = \angle BCF$ and $\angle CJH = \angle CBF = 90$ °. Thus, $\triangle CJH \sim \triangle CBF$.

Using the Pythagorean theorem, $CF = \sqrt{30^2 + 10^2} = \sqrt{1000} = 10\sqrt{10}$. Since the corresponding side in $\triangle CJH$ is CH = 10, it follows that the side lengths in $\triangle CBF$ are $\sqrt{10}$ times the length of their corresponding sides in $\triangle CJH$. Thus, the area of $\triangle CBF$ is $\sqrt{10} \times \sqrt{10} = 10$ times the area of $\triangle CJH$. Since the area of $\triangle CBF$ is 150, it follows that the area of $\triangle CJH$ is 15.

Finally, we can determine the total area shaded.

Shaded area = Area
$$ABCD$$
 - Area $\triangle DAF$ - 2 × Area $\triangle CBF$ + 2 × Area $\triangle CJH$
= $30 \times 30 - 300 - 2 \times 150 + 2 \times 15$
= 330

Therefore, the fraction of the area of square ABCD that is shaded is $\frac{330}{900} = \frac{11}{30}$.