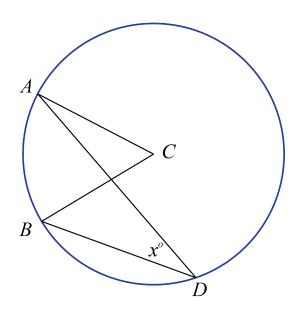


Problem of the Week Problem E and Solution Slice of an Arc

Problem

Points A, B, and D lie on the circumference of a circle with centre C. If $\angle ADB = x^{\circ}$, then determine the measure of $\angle ACB$ in terms of x.

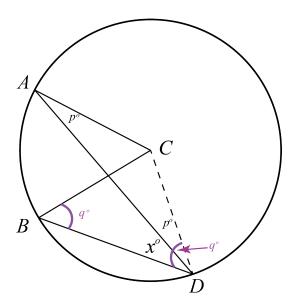


Solution

We construct radius CD. Let $\angle CAD = p^{\circ}$ and $\angle CBD = q^{\circ}$.

Since CA and CD are both radii of the circle, CA = CD. So $\triangle CAD$ is isosceles and $\angle CDA = \angle CAD = p^{\circ}$. Since the angles in a triangle add to 180° , $\angle ACD = (180 - 2p)^{\circ}$.

Since CB and CD are both radii of the circle, CB = CD. So $\triangle CBD$ is isosceles and $\angle CDB = \angle CBD = q^{\circ}$. Since the angles in a triangle add to 180° , $\angle BCD = (180 - 2q)^{\circ}$.



Now,

$$\angle ACB = \angle ACD - \angle BCD$$

$$= (180 - 2p)^{\circ} - (180 - 2q)^{\circ}$$

$$= (2q - 2p)^{\circ}$$

$$= 2(q - p)^{\circ}$$

Since
$$\angle CDB = \angle CDA + \angle ADB$$
, we have $q = p + x$.
Thus, $\angle ACB = 2(q - p)^{\circ} = 2x^{\circ}$.

NOTE: In general, the angle inscribed at the centre of a circle is twice the size of the angle inscribed at the circumference by the same chord. That is, the angle inscribed by chord AB at the centre of the circle ($\angle ACB$) is double the angle inscribed by chord AB on the circumference ($\angle ADB$).