

Problem of the Week Problem E and Solution

No Parabolema to Find the Area!

Problem

A parabola intersects the y-axis at B(0,5), and intersects the x-axis at C(5,0) and at A(r,0), where 0 < r < 5. The area of $\triangle ABC$ is 5 units².

If D(p,q) is the vertex of the parabola, then determine the area of $\triangle DBC$.

Solution

The height of $\triangle ABC$ is the distance from the x-axis to B(0,5), which is 5 units. The base is AC = 5 - r. Since the area of $\triangle ABC$ is 5, using the formula for the area of a triangle, we have $\frac{(5-r)(5)}{2} = 5$. Then 5 - r = 2 and r = 3 follows. Thus, the coordinates of A are (3,0).

The axis of symmetry of the parabola is a vertical line through the midpoint of AC, which is (4,0). It follows that the x-coordinate of the vertex is p=4. Therefore, the vertex is D(4,q).

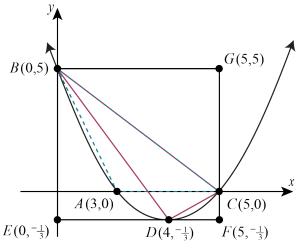
Since the two x-intercepts of the parabola are 3 and 5, the equation of the parabola in factored form can be written as y = a(x-3)(x-5). Since the parabola passes through B(0,5), we can solve for a by substituting x = 0 and y = 5 into y = a(x-3)(x-5). This leads to $a = \frac{1}{3}$ and thus the parabola has equation $y = \frac{1}{3}(x-3)(x-5)$.

To determine q, the y-coordinate of D, we substitute x=4, y=q into $y=\frac{1}{3}(x-3)(x-5)$. Then $q=\frac{1}{3}(4-3)(4-5)=-\frac{1}{3}$. Therefore, D has coordinates $(4,-\frac{1}{3})$.

From here, we proceed with two different solutions to determine the area of $\triangle DBC$.

Solution 1

Consider points $E(0, -\frac{1}{3})$, $F(5, -\frac{1}{3})$, and G(5, 5), and draw in BGFE.



Since B and G have the same y-coordinate, BG is a horizontal line. Since G and F both have x-coordinate 5, GF is a vertical line which passes through C. Since E and F both have y-coordinate $-\frac{1}{3}$, EF is a horizontal line which passes through D. Since B and E have the same x-coordinate, BE is a vertical line. Thus, BGFE is a rectangle that encloses $\triangle DBC$, and we have

In rectangle BGFE, BG = 5 - 0 = 5 and $BE = 5 - (-\frac{1}{3}) = \frac{16}{3}$. The area of rectangle $BGFE = BG \times BE = 5 \times \frac{16}{3} = \frac{80}{3}$ units².

Since BGFE is a rectangle, $\triangle BGC$ is right-angled at G. Since BG = 5 and GC = 5 - 0 = 5, the area of $\triangle BGC = \frac{BG \times GC}{2} = \frac{5 \times 5}{2} = \frac{25}{2}$ units².

Since BGFE is a rectangle, $\triangle DFC$ is right-angled at F. Since $CF = 0 - (-\frac{1}{3}) = \frac{1}{3}$ and DF = 5 - 4 = 1, the area of $\triangle DFC = \frac{CF \times DF}{2} = \frac{\frac{1}{3} \times 1}{2} = \frac{1}{6}$ units².

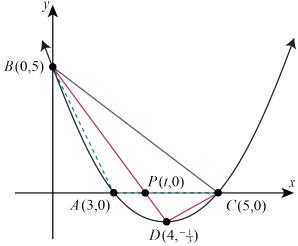
Since BGFE is a rectangle, $\triangle BED$ is right-angled at E. Since $BE = \frac{16}{3}$ and ED = 4 - 0 = 4, the area of $\triangle BED = \frac{BE \times ED}{2} = \frac{\frac{16}{3} \times 4}{2} = \frac{32}{3}$ units².

Thus,

area
$$\triangle DBC$$
 = area $BGFE$ - area $\triangle BGC$ - area $\triangle DFC$ - area $\triangle BED$
= $\frac{80}{3} - \frac{25}{2} - \frac{1}{6} - \frac{32}{3}$
= $\frac{10}{3}$ units²

Solution 2

Let P(t,0) be the point where the line through B and D crosses the x-axis. We will determine the equation of the line that passes through B, P, and D.



Since the line passes through B(0,5) and $D(4,-\frac{1}{3})$, the slope of the line is $\frac{5+\frac{1}{3}}{0-4} = \frac{\frac{16}{3}}{-4} = -\frac{4}{3}$.

The y-intercept of the line is 5. Therefore, the equation of the line through B, P, and D is $y = -\frac{4}{3}x + 5$.

To determine t, the x-coordinate of P we substitute x=t and y=0 into $y=-\frac{4}{3}x+5$, the equation of the line. Thus, $0=-\frac{4}{3}t+5$, and 4t=15 or $t=\frac{15}{4}$ follows.

In $\triangle BPC$, the height is the perpendicular distance from the x-axis to point B, which is 5. The base is $PC = 5 - \frac{15}{4} = \frac{5}{4}$. Thus, the area of $\triangle BPC = \frac{\frac{5}{4} \times 5}{2} = \frac{25}{8}$ units².

In $\triangle DPC$, the height is the perpendicular distance from the x-axis to point D, which is $\frac{1}{3}$.

The base is $PC = 5 - \frac{15}{4} = \frac{5}{4}$. Thus, the area of $\triangle DPC = \frac{\frac{5}{4} \times \frac{1}{3}}{2} = \frac{5}{24}$ units².

Therefore, the area of $\triangle DBC = \text{area } \triangle BPC + \text{area } \triangle DPC = \frac{25}{8} + \frac{5}{24} = \frac{10}{3} \text{ units}^2$.