

Problem of the Week Problem E and Solution Circles and Corners Curiosity

Problem

Two circles, with centres A and B, intersect so that A lies on the circle with centre B, and B lies on the circle with centre A. Point C lies on the circle with centre A and points E and F lie on the circle with centre B so that CAE and CBF are straight line segments.

If $\angle CFE = n^{\circ}$, with 0 < n < 90, determine the measure of $\angle FCE$ in terms of n.

Solution

Draw in AB and BE. Points A, E, and F lie on the circumference of the circle with centre B. Therefore, BA = BE = BF. Points B and C lie on the circle with centre A, thus AB = AC.

Let $\angle BEA = x^{\circ}$. Since BA = BE, $\triangle BAE$ is isosceles, and so $\angle BAE = \angle BEA = x^{\circ}$.

Let $\angle ABC = y^{\circ}$. Since AB = AC, $\triangle ABC$ is isosceles, and so $\angle BCA = \angle ABC = y^{\circ}$.

Also, since BE = BF, $\triangle BEF$ is isosceles, and so $\angle BEF = \angle BFE = \angle CFE = n^{\circ}$.

 $\angle BAE$ is an exterior angle to $\triangle ABC$. By the Exterior Angle Theorem for triangles, $\angle BAE = \angle BCA + \angle ABC$. Therefore, x = 2y.

In $\triangle CEF$, since the angles in a triangle sum to 180°, we have

 $\angle FCE + \angle CFE + \angle CEF = 180^{\circ}$. Since $\angle FCE = \angle BCA = y^{\circ}$, $\angle CFE = n^{\circ}$, and

 $\angle CEF = \angle BEA + \angle BEF = x^{\circ} + n^{\circ}$, we have $y^{\circ} + n^{\circ} + x^{\circ} + n^{\circ} = 180^{\circ}$. Thus, y + x + 2n = 180.

Since x = 2y, we have y + 2y + 2n = 180, which simplifies to 3y = 180 - 2n or $y = 60 - \frac{2}{3}n$.

Therefore, $\angle FCE = y^{\circ} = \left(60 - \frac{2}{3}n\right)^{\circ}$.