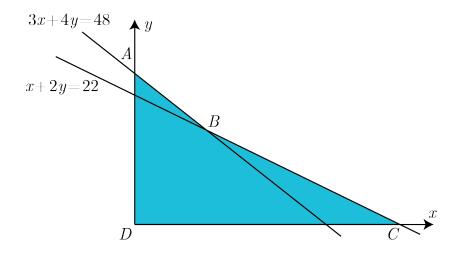


Problem of the Week Problem D and Solution Shading the Quad

Problem

Peggie draws the line 3x + 4y = 48 and labels its intersection with the y-axis A. Derrick then draws the line x + 2y = 22 on the same set of axes and labels its intersection with Peggie's line B. Derrick then labels the intersection of his line with the x-axis C. Peggie then labels the origin D and shades in quadrilateral ABCD, as shown.



Determine the area of quadrilateral ABCD.

Solution

We start by finding the coordinates of points A, B, and C. Since D is the origin, its coordinates are (0,0).

To determine the coordinates of point A, we need to find the y-intercept of the line 3x + 4y = 48. To find this, let x = 0. Then 4y = 48, so y = 12. Thus, the coordinates of A are (0, 12).

To determine the coordinates of point C, we need to find the x-intercept of the line x + 2y = 22. To find this, let y = 0. Then x = 22. Thus, the coordinates of C are (22,0).

Point B is the point of intersection of the lines 3x + 4y = 48 and x + 2y = 22. To find this, we solve the following system of equations.

$$3x + 4y = 48\tag{1}$$

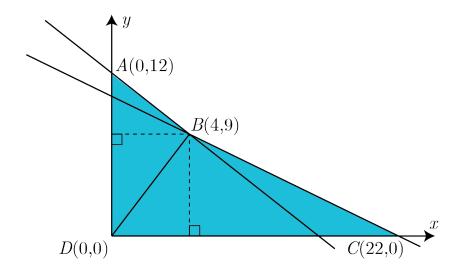
$$x + 2y = 22 \tag{2}$$

From equation (2), we solve for x to obtain x = 22 - 2y. Substituting into equation (1), we have

$$3(22-2y) + 4y = 48$$
$$66 - 6y + 4y = 48$$
$$-2y = -18$$
$$y = 9$$

Then substituting back into x = 22 - 2y, we obtain x = 22 - 2(9) = 4. Thus, the coordinates of B are (4, 9).

We now draw line segment BD to divide quadrilateral ABCD into two triangles: $\triangle ABD$ and $\triangle CBD$ as shown.



 $\triangle ABD$ has a base of 12 and a height of 4, and $\triangle CBD$ has a base of 22 and a height of 9. Thus,

Area
$$ABCD$$
 = Area $\triangle ABD$ + Area $\triangle CBD$
= $\frac{1}{2}(12)(4) + \frac{1}{2}(22)(9)$
= $24 + 99$
= 123

Therefore, the area of quadrilateral ABCD is 123 units².