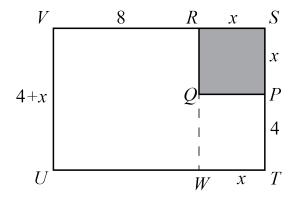


Problem of the Week Problem D and Solution Cutting the Corner


Problem

Rectangle STUV has P on ST, R on SV, and Q inside the rectangle such that PQRS is a square. When square PQRS is removed from rectangle STUV, the remaining shape has an area of 92 m^2 .

If PT = 4 m and RV = 8 m, what is the area of rectangle STUV?

Solution

Let x represent the side length of square PQRS. In the diagram, extend RQ to intersect TU at W. This creates rectangle PTWQ and rectangle RWUV. Also, UV = PT + SP = (4 + x) m and TW = RS = x m.

We are given that area $PTWQ + \text{area } RWUV = 92 \text{ m}^2$. That is,

$$PT \times TW + RV \times UV = 92$$
$$4x + 8(4 + x) = 92$$
$$4x + 32 + 8x = 92$$
$$12x + 32 = 92$$
$$12x = 60$$
$$x = 5$$

Thus, x = 5 m, and so SV = 8 + x = 13 m, and UV = 4 + x = 9 m.

Therefore, the area of rectangle STUV is $SV \times UV = 13 \times 9 = 117 \text{ m}^2$.