

Problem of the Week Problem D and Solution Welcome to a New Year!

Problem

 5^3 is a power with base 5 and exponent 3.

 5^3 means $5 \times 5 \times 5$ and is equal to 125 when expressed as an integer.

When $8^{674} \times 5^{2025}$ is expressed as an integer, how many digits are in the product?

Solution

An immediate temptation might be to reach for a calculator. In this case, basic calculator technology will let you down. We will solve this problem using our knowledge of powers and corresponding power laws.

$$8^{674} \times 5^{2025} = ((2^{3})^{674}) \times 5^{2025}$$

$$= 2^{3 \times 674} \times 5^{2025}$$

$$= 2^{2022} \times 5^{2025}$$

$$= 2^{2022} \times 5^{2022} \times 5^{3}$$

$$= (2 \times 5)^{2022} \times 125$$

$$= 10^{2022} \times 125$$

But 10^{2022} is the number 1 followed by 2022 zeroes. When we multiply this number by the three-digit number 125, we obtain the number 125 followed by 2022 zeroes. Therefore, $8^{674} \times 5^{2025}$ has 2022+3=2025 digits. Happy New Year again!