

Problem of the Week Problem D and Solution Stained Glass

Problem

Points A(0, a), B(2, -1), C(3, 2), D(0, -1), and O(0, 0) are such that $\triangle ABD$ and $\triangle COB$ have the same area. If a > 0, determine the value of a.

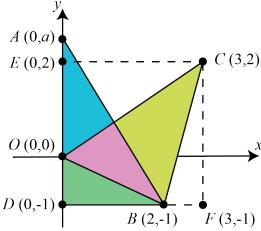
Solution

Solution 1

In $\triangle ABD$, AD = a - (-1) = a + 1 and DB = 2 - 0 = 2.

Thus, area $\triangle ABD = \frac{AD \times DB}{2} = \frac{(a+1) \times 2}{2} = a+1$ units².

To determine the area of $\triangle COB$, we consider points E(0,2) and F(3,-1) and draw in ECFD.



Since E and D both have x-coordinate 0, ED is a vertical line which passes through O. Since C and F have the same x-coordinate, CF is also a vertical line. Since E and E have the same E-coordinate, E is a horizontal line. Since E and E both have E-coordinate E-coordinate horizontal line which passes through E-coordinate have E

area
$$\triangle COB$$
 = area $ECFD$ - area $\triangle CEO$ - area $\triangle ODB$ - area $\triangle BFC$

In rectangle ECFD, EC = 3 - 0 = 3 and ED = 2 - (-1) = 3. The area of rectangle $EDFC = EC \times ED = 3 \times 3 = 9$ units².

Since ECFD is a rectangle, $\triangle CEO$ is right-angled at E. Since EC=3 and EO=2-0=2, the area of $\triangle CEO=\frac{EC\times EO}{2}=\frac{3\times 2}{2}=3$ units².

Since ECFD is a rectangle, $\triangle ODB$ is right-angled at D. Since OD = 0 - (-1) = 1 and DB = 2 - 0 = 2, the area of $\triangle ODB = \frac{OD \times DB}{2} = \frac{1 \times 2}{2} = 1$ unit².

Since ECFD is a rectangle, $\triangle BFC$ is right-angled at F. Since BF=3-2=1 and CF=2-(-1)=3, the area of $\triangle BFC=\frac{BF\times CF}{2}=\frac{1\times 3}{2}=1.5$ units².

Thus,

area
$$\triangle COB$$
 = area $ECFD$ - area $\triangle CEO$ - area $\triangle ODB$ - area $\triangle BFC$
= $9-3-1-1.5$
= 3.5 units^2

We're given that $\triangle ABD$ and $\triangle COB$ have the same area. Thus, the area of $\triangle ABD = 3.5$ units².

Since the area of $\triangle ABD = a + 1$ units², we have a + 1 = 3.5 and a = 2.5 follows.

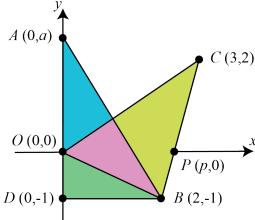
Therefore, the value of a is 2.5.

Solution 2

In $\triangle ABD$, AD = a - (-1) = a + 1 and DB = 2 - 0 = 2.

Thus, area $\triangle ABD = \frac{AD \times DB}{2} = \frac{(a+1) \times 2}{2} = a+1$ units².

Let P(p,0) be the point where the line through C(3,2) and B(2,-1) intersects the x-axis.



We have area $\triangle COB = \text{area } \triangle COP + \text{area } \triangle BOP$.

To determine the value of p, we first determine the equation of the line through C(3,2) and B(2,-1).

Since the slope of the line is $\frac{2-(-1)}{3-2}=3$, the equation of the line is of the form y=3x+b, for some b. Substituting x=3 and y=2 gives 2=3(3)+b and b=-7 follows. Therefore, the equation of the line though C(3,2) and B(2,-1) is y=3x-7.

Substituting x = p and y = 0 into y = 3x - 7 we obtain 0 = 3p - 7 and $p = \frac{7}{3}$ follows.

In $\triangle COP$, $OP = \frac{7}{3}$ and the height is the perpendicular distance from the x-axis to C(3,2), which is 2 units. Therefore, the area of $\triangle COP = \frac{\frac{7}{3} \times 2}{2} = \frac{7}{3}$ units².

In $\triangle BOP$, $OP = \frac{7}{3}$ and the height is the perpendicular distance from the x-axis to B(2, -1), which is 1 unit. Therefore, the area of $\triangle BOP = \frac{\frac{7}{3} \times 1}{2} = \frac{7}{6}$ units².

Therefore, area $\triangle COB = \text{area } \triangle COP + \text{area } \triangle BOP = \frac{7}{3} + \frac{7}{6} = \frac{14}{6} + \frac{7}{6} = \frac{21}{6} = \frac{7}{2} \text{ units}^2$.

We're given that $\triangle ABD$ and $\triangle COB$ have the same area. Thus, the area of $\triangle ABD = \frac{7}{2}$ units².

Since the area of $\triangle ABD = a + 1$ units², we have $a + 1 = \frac{7}{2}$ and $a = \frac{5}{2} = 2.5$ follows.

Therefore, the value of a is 2.5.