

Problem of the Week Problem D and Solution Isosceles Delight

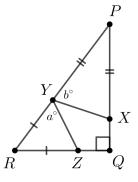
Problem

 $\triangle PQR$ is right-angled at Q. Point X lies on PQ, point Z lies on QR, and point Y lies on PR such that PX = PY and RZ = RY.

Determine the measure of $\angle XYZ$.

Solution Solution 1

Let $\angle RYZ = a^{\circ}$ and $\angle PYX = b^{\circ}$. Since RY = RZ, $\triangle RYZ$ is isosceles and $\angle RZY = \angle RYZ = a^{\circ}$. Since PY = PX, $\triangle PYX$ is isosceles and $\angle PXY = \angle PYX = b^{\circ}$.



The angles in a triangle sum to 180°. Therefore, in $\triangle RYZ$,

$$\angle YRZ + \angle RYZ + \angle RZY = 180^{\circ}$$
$$\angle YRZ + a^{\circ} + a^{\circ} = 180^{\circ}$$
$$\angle YRZ = 180^{\circ} - 2a^{\circ}$$

In $\triangle PQR$,

$$\angle RPQ + \angle PQR + \angle QRP = 180^{\circ}$$
$$\angle RPQ + 90^{\circ} + (180^{\circ} - 2a^{\circ}) = 180^{\circ}$$
$$\angle RPQ = 2a^{\circ} - 90^{\circ}$$

In $\triangle PYX$,

$$\angle PYX + \angle PXY + \angle YPX = 180^{\circ}$$
$$b^{\circ} + b^{\circ} + \angle YPX = 180^{\circ}$$

Since $\angle YPX = \angle RPQ$ (same angle), we have

$$b^{\circ} + b^{\circ} + (2a^{\circ} - 90^{\circ}) = 180^{\circ}$$

 $2b^{\circ} = 270^{\circ} - 2a^{\circ}$
 $b^{\circ} = 135^{\circ} - a^{\circ}$

Now, PYR forms a straight line, so $\angle PYR = 180^{\circ}$. That is,

$$\angle PYX + \angle XYZ + \angle RYZ = 180^{\circ}$$
$$b^{\circ} + \angle XYZ + a^{\circ} = 180^{\circ}$$
$$(135^{\circ} - a^{\circ}) + \angle XYZ + a^{\circ} = 180^{\circ}$$
$$\angle XYZ = 180^{\circ} - 135^{\circ} = 45^{\circ}$$

CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Therefore, $\angle XYZ = 45^{\circ}$. Note that in solving for $\angle XYZ$ it is was not necessary to determine either a° or b° .

Solution 2

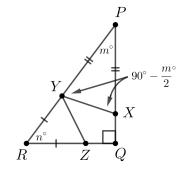
In $\triangle PQR$, let $\angle RPQ = m^{\circ}$ and $\angle PRQ = n^{\circ}$. The angles in a triangle sum to 180°. Therefore, in $\triangle PQR$,

$$\angle RPQ + \angle PQR + \angle PRQ = 180^{\circ}$$
$$m^{\circ} + 90^{\circ} + n^{\circ} = 180^{\circ}$$
$$m^{\circ} + n^{\circ} = 90^{\circ}$$

Therefore, m + n = 90.

Since PY = PX, $\triangle PYX$ is isosceles and so $\angle PXY = \angle PYX$. Also, in $\triangle PYX$

$$\angle PYX + \angle PXY + \angle YPX = 180^{\circ} \angle PYX + \angle PYX + m^{\circ} = 180^{\circ} 2\angle PYX = 180^{\circ} - m^{\circ}$$



0

Therefore, $\angle PXY = \angle PYX = 90^{\circ} - \left(\frac{m}{2}\right)^{\circ}$.

Similarly, since RY = RZ, $\triangle RYZ$ is isosceles, and therefore $\angle RYZ = \angle RZY$. Also, in $\triangle RYZ$,

$$\angle RYZ + \angle RZY + \angle YRZ = 180^{\circ} \angle RYZ + \angle RYZ + n^{\circ} = 180^{\circ} 2\angle RYZ = 180^{\circ} - n^{\circ}$$

Therefore, $\angle RYZ = \angle RZY = 90^{\circ} - \left(\frac{n}{2}\right)^{\circ}$. Since $\angle PYR = 180^{\circ}$, we have

$$\angle PYX + \angle XYZ + \angle RYZ = 180^{\circ}$$

$$\left(90^{\circ} - \left(\frac{m}{2}\right)^{\circ}\right) + \angle XYZ + \left(90^{\circ} - \left(\frac{n}{2}\right)^{\circ}\right) = 180^{\circ}$$

$$180^{\circ} - \left(\frac{m}{2}\right)^{\circ} - \left(\frac{n}{2}\right)^{\circ} + \angle XYZ = 180^{\circ}$$

$$\angle XYZ = \left(\frac{m}{2}\right)^{\circ} + \left(\frac{n}{2}\right)^{\circ}$$

$$= \left(\frac{m+n}{2}\right)^{\circ}$$

Therefore, since m + n = 90, we have $\angle XYZ = \left(\frac{90}{2}\right)^{\circ} = 45^{\circ}$.

Therefore, $\angle XYZ = 45^{\circ}$. Note that in solving for $\angle XYZ$ it is was not necessary to determine either m° or n° .