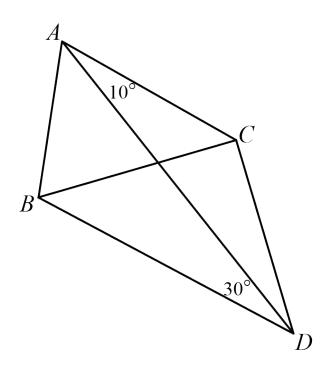


Problem of the Week Problem C and Solution Subtle Symmetry

Problem

Quadrilateral ACDB has AC = BC = DC, $\angle ADB = 30^{\circ}$, and $\angle CAD = 10^{\circ}$.



Determine the measure of $\angle ACB$.

Solution

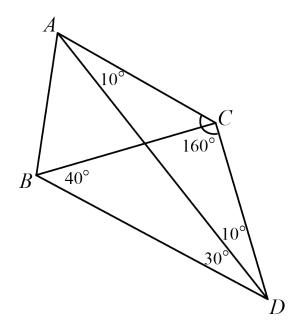
Since AC = DC, $\triangle ACD$ is isosceles. Therefore, $\angle CDA = \angle CAD = 10^{\circ}$.

Thus,
$$\angle CDB = \angle CDA + \angle ADB = 10^{\circ} + 30^{\circ} = 40^{\circ}$$
.

Since BC = DC, $\triangle BCD$ is isosceles. Therefore, $\angle CBD = \angle CDB = 40^{\circ}$.

Since the angles in a triangle sum to 180°, in $\triangle ACD$ we have

$$\angle CAD + \angle CDA + \angle ACD = 180^{\circ}$$
$$10^{\circ} + 10^{\circ} + \angle ACD = 180^{\circ}$$
$$20^{\circ} + \angle ACD = 180^{\circ}$$
$$\angle ACD = 160^{\circ}$$



Since the angles in a triangle sum to 180°, in $\triangle BCD$ we have

$$\angle CDB + \angle CBD + \angle BCD = 180^{\circ}$$
$$40^{\circ} + 40^{\circ} + \angle BCD = 180^{\circ}$$
$$80^{\circ} + \angle BCD = 180^{\circ}$$
$$\angle BCD = 100^{\circ}$$

Since $\angle ACD = \angle ACB + \angle BCD$, we have $160^{\circ} = \angle ACB + 100^{\circ}$. Therefore, $\angle ACB = 160^{\circ} - 100^{\circ} = 60^{\circ}$.

EXTENSION:

Suppose $\angle ADB = 30^{\circ}$ and $\angle CAD = x^{\circ}$. Show that $\angle ACB = 60^{\circ}$.