
Problem of the Week Problem C and Solution Angled

Problem

Line segments AB and CD are parallel, with AB above CD. Point J lies above AB, and points E and F lie on CD, with E to the left of F, so that JE intersects AB at G and JF intersects AB at H.

If $\angle CEG = 110^{\circ}$ and $\angle GHF = 122^{\circ}$, determine the measure of $\angle GJH$.

Solution

Solution 1

Since JHF is a straight line, then $\angle JHG = 180^{\circ} - \angle GHF = 180^{\circ} - 122^{\circ} = 58^{\circ}$. Since AB and CD are parallel, $\angle AGJ = \angle CEG = 110^{\circ}$. Since AGH is a straight line, $\angle JGH = 180^{\circ} - \angle AGJ = 180^{\circ} - 110^{\circ} = 70^{\circ}$. Since the three angles in a triangle add to 180° , then

$$\angle GJH = 180^{\circ} - \angle JGH - \angle JHG = 180^{\circ} - 70^{\circ} - 58^{\circ} = 52^{\circ}.$$

Solution 2

Since JHF is a straight line, then $\angle JHG = 180^{\circ} - \angle GHF = 180^{\circ} - 122^{\circ} = 58^{\circ}$. Since AB and CD are parallel, $\angle JFE = \angle JHG = 58^{\circ}$. Since CEF is a straight line, $\angle JEF = 180^{\circ} - \angle CEG = 180^{\circ} - 110^{\circ} = 70^{\circ}$. Since the three angles in a triangle add to 180° , then

$$\angle GJH = \angle EJF = 180^{\circ} - \angle JEF - \angle JFE = 180^{\circ} - 70^{\circ} - 58^{\circ} = 52^{\circ}.$$

NOTE: Since $\triangle GJH$ and $\triangle EJF$ have all three angles in common, we can say that they are *similar triangles*. Similar triangles have properties that make them very useful in geometry problems.