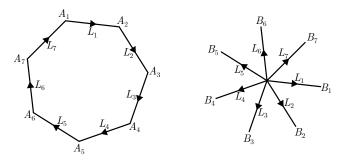


Problem of the Month Problem 6: Regular Polygons and Lattice Points

March 2025


A *lattice point* in the Cartesian plane is a point (a, b) with the property that both a and b are integers. In this Problem of the Month, we will investigate regular polygons that have every vertex lying on a lattice point.

- 1. Let A and B be distinct lattice points on the Cartesian plane, neither of which have coordinates (0,0). Show that the measure of $\angle AOB$ cannot equal 60°, where O has coordinates (0,0).
- 2. Consider a regular pentagon ABCDE. Let F be the point of intersection of lines AD and BE.

- (a) Show that the quadrilateral FBCD is a parallelogram.
- (b) Show that if B, C, and D are lattice points then so is F.
- 3. View a regular *n*-gon as a collection of *n* line segments. Give each line segment a direction (indicated by an arrow), moving in a clockwise direction (see the image below). Label the line segments L_1, L_2, \ldots, L_n . For each *i*, label the starting point of L_i by A_i . Note that the points A_1, A_2, \ldots, A_n are the vertices of the *n*-gon.

Now, translate the line segments (without any rotation) so that the points A_i all coincide. For each L_i , label its new endpoint by B_i . Below is an image of this process when n = 7.

- (a) Show that the polygon $B_1B_2\cdots B_n$ is a regular *n*-gon.
- (b) Let y be the length of L_1 and x be the length of the line segment B_1B_2 . Compute $\frac{x}{y}$ in terms of n.
- 4. We call a polygon that has every vertex lying on a lattice point a *lattice polygon*. Show that if a regular *n*-gon is a lattice polygon, then n = 4.