
Problem of the Month
Solution to Problem 4: A Polynomial Sandwich

January 2025

1. We present two solutions to Problem 1. In both solutions, we will use the so called triangle
inequality. This frequently useful fact says that if u and v are real numbers, then

|u+ v| ≤ |u|+ |v|

where |x| represents the absolute value of the real number x. The triangle inequality can
be applied twice to get that |u+ v+w| ≤ |u|+ |v|+ |w| for any real numbers u, v, and w.
If you are unfamiliar with the triangle inequality or even with absolute values, this might
be a good time for an internet search!

Solution 1: We will prove the following fact: If p(x) = Ax3 + Bx2 + Cx + D with real
numbers A,B,C, and D and A ̸= 0, then there are infinitely many integers n such that
p(n) > 0 and infinitely many integers m such that p(m) < 0.

Then a =
1

3
can be deduced from this fact. To see this, consider the polynomial

q(x) = f(x)−
(
1

3
x3 + x2 + 2x+

4

3

)
=

(
a− 1

3

)
x3 + (b− 1)x2 + (c− 2)x+

(
d− 4

3

)
.

Using the given information, q(n) ≤ 0 for every integer n with the possible exception of

n = −2. This means q(n) > 0 for at most one integer. By the fact above, if a − 1

3
were

different from 0, then there would be infinitely many integers n with q(n) > 0. This means

we must have a− 1

3
= 0.

Interestingly, we have only used one of the two inequalities given in the problem. To
understand why we can only use one of the inequalities, you may want to reread the hint
for this problem and think about what the inequalities say when n is negative versus when
n is positive.

To prove the fact above, set M = max{|B|, |C|, |D|}. In particular, this means M is at
least as large as each of |B|, |C|, and |D|.

If B = C = D = 0, then p(n) > 0 when n > 0 and p(m) < 0 when m < 0 or vice versa,
depending on the sign of A. For the rest of the proof, we assume not all of B,C, and D
are zero, which means M > 0.

For any nonzero integer n, using the triangle inequality and the fact that 1 ≤ |n| ≤ |n|2 ≤
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|n|3 we get that

|Bn2 + Cn+D| ≤ |Bn2|+ |Cn|+ |D|
= |B||n|2 + |C||n|+ |D|
≤ |B||n|2 + |C||n|2 + |D||n|2

≤ M |n|2 +M |n|2 +M |n|2

= 3M |n|2.

If u and v are real numbers with v positive, the inequality |u| ≤ v is really saying that
−v ≤ u ≤ v. Since 3M |n|2 is positive, the chain of inequalities above implies that

−3M |n|2 ≤ Bn2 + Cn+D ≤ 3M |n|2.

Adding An3 to this chain of inequalities gives

An3 − 3M |n|2 ≤ p(n) ≤ An3 + 3M |n|2 (∗)

for all nonzero integers n.

We will use these inequalities to show that as long as A ̸= 0, there are infinitely many
integers n with p(n) > 0 and infinitely many integers m with p(m) < 0.

First, suppose A > 0. In this case, choose any positive integer n >
3M

A
. There are

infinitely many such n since M and A are constants. Noting that 0 < n2 = |n|2, this
implies n3 >

3M

A
|n|2. Since A > 0, we can multiply both sides by A and rearrange to

get 0 < An3 − 3M |n|2. Combining with (∗), this implies p(n) > 0 for any positive integer

n >
3M

A
.

Now choose any negative integerm <
−3M

A
. As in the previous paragraph, 0 < m2 = |m|2,

which impliesm3 < −3M

A
|m|2, which can be rearranged to Am3+3M |m|2 < 0. Combining

with (∗), gives p(m) < 0 for any negative integer m <
−3M

A
, and there are infinitely many

such m.

In a similar manner we can deal with the case of A < 0, proving the fact is true for all A ̸= 0.

Solution 2: We will assume that a ̸= 1

3
and deduce a contradiction. First, assume a >

1

3
.

By rearranging the inequality

an3 + bn2 + cn+ d ≤ 1

3
n3 + n2 + 2n+

4

3
,

which holds for all integers except possibly n = −2, we get(
a− 1

3

)
n3 ≤ (1− b)n2 + (2− c)n+

4

3
− d.

2



Multiplying through by 3 gives

(3a− 1)n3 ≤ 3(1− b)n2 + 3(2− c)n+ 4− 3d.

Dividing through by n3 gives

3a− 1 ≤ 3(1− b)

n
+

3(2− c)

n2
+

(4− 3d)

n3
,

but we are only guaranteed that this inequality holds for positive integers n since the
original inequality may fail at n = −2, and dividing by a negative integer n would have
reversed the inequality.

For any real number u, we have u ≤ |u|, which means

3a− 1 ≤
∣∣∣∣3(1− b)

n

∣∣∣∣+ ∣∣∣∣3(2− c)

n2

∣∣∣∣+ ∣∣∣∣(4− 3d)

n3

∣∣∣∣ .
Noting that

1

n2
<

1

n
and

1

n3
<

1

n
for all integers n > 1, we get

3a− 1 ≤
∣∣∣∣3(1− b)

n

∣∣∣∣+ ∣∣∣∣3(2− c)

n2

∣∣∣∣+ ∣∣∣∣(4− 3d)

n3

∣∣∣∣
= |3(1− b)| 1

n
+ |3(2− c)| 1

n2
+ |(4− 3d)| 1

n3

< |3(1− b)| 1
n
+ |3(2− c)| 1

n
+ |(4− 3d)| 1

n

=
1

n
(|3(1− b)|+ |3(2− c)|+ |(4− 3d)|)

and so

3a− 1 <
1

n
(|3(1− b)|+ |3(2− c)|+ |(4− 3d)|) (∗∗)

for every integer n > 1. Recall that a >
1

3
which implies 3a − 1 > 0. If |3(1− b)| +

|3(2− c)| + |(4− 3d)| is equal to 0, then (∗∗) says that something positive is less than 0,
which can never happen. Otherwise, the quantity |3(1− b)|+ |3(2− c)|+ |(4− 3d)| is some
positive number, which means that by taking n large enough, we can force

1

n
(|3(1− b)|+ |3(2− c)|+ |(4− 3d)|) < 3a− 1

which violates (∗∗) as well. In other words, (∗∗) can only hold for finitely many positive

integers n. However, the assumption a >
1

3
implies that (∗∗) holds for all positive integers.

This means it must not be the case that a >
1

3
so we conclude that a ≤ 1

3
.

Similarly, if we assume a <
1

3
, we can use the other inequality to derive a contradiction.

When doing this, one would need to be careful to take n < −2 since the assumed inequality
is not guaranteed to hold for n = −2.

If you have learned a bit about limits in a calculus course, you might want to think about
how this relates to the Squeeze Theorem. In fact, the Squeeze Theorem can be used to

give a very short proof that a =
1

3
.
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2. Since
1

3
n3 − n− 2

3
≤ f(n) ≤ 1

3
n3 + n2 + 2n+

4

3
,

for all integers (except possibly n = −2), this chain of inequalities provides an interval in
which f(n) lies for each integer n ̸= −2. Since f(n) is an integer, this will give a finite
number of possible values of f(n). By finding integers n for which there are a small number
of possibilities for f(n), we will be able to find a finite list of possibilities for f(x). To help
with this, consider the polynomial

h(x) =

(
1

3
x3 + x2 + 2x+

4

3

)
−
(
1

3
x3 − x− 2

3

)
= x2 + 3x+ 2.

For an integer n, h(n) is the length of the interval containing f(n). Integers n where h(n)
is small will have a small number of possibilities for the value of f(n).

Notice that h(x) = (x+1)(x+2), so we expect h(n) to be smallest when n is either equal
to or near −1 and −2. We are not guaranteed that the inequalities hold for n = −2.
Therefore, we will substitute n = −1, n = 0, and n = −3.

When n = −1,

1

3
(−1)3 − (−1)− 2

3
≤ f(−1) ≤ 1

3
(−1)3 + (−1)2 + 2(−1) +

4

3

0 ≤ f(−1) ≤ 0

which means f(−1) = 0.

When n = 0, we have

1

3
(0)3 − (0)− 2

3
≤ f(0) ≤ 1

3
(0)3 + (0)2 + 2(0) +

4

3

−2

3
≤ f(0) ≤ 4

3

and since f(0) is an integer, this means f(0) = 0 or f(0) = 1.

Finally, with n = −3, we get

1

3
(−3)3 − (−3)− 2

3
≤ f(−3) ≤ 1

3
(−3)3 + (−3)2 + 2(−3) +

4

3

−20

3
≤ f(−3) ≤ −14

3

and since f(−3) must be an integer, we get that f(−3) is either −6 or −5.

We can translate this into information about the unknown coefficients, b, c, and d of f(n).
From f(−1) = 0, we get

0 =
1

3
(−1)3 + b(−1)2 + c(−1) + d = −1

3
+ b− c+ d

or b− c+ d =
1

3
.

4



Substituting n = 0, we have that f(0) = d, which implies d = 0 or d = 1.

Since f(−3) = −5 or f(−3) = −6 and

f(−3) =
1

3
(−3)3 + b(−3)2 + c(−3) + d = −9 + 9b− 3c+ d.

it must be that 9b− 3c + d = 4 or 9b− 3c + d = 3. This means b, c, and d satisfy one of
the following four systems of equations:

b − c + d =
1

3

9b − 3c + d = 3

d = 0


b − c + d =

1

3

9b − 3c + d = 3

d = 1
b − c + d =

1

3

9b − 3c + d = 4

d = 0


b − c + d =

1

3

9b − 3c + d = 4

d = 1

Consider the system on the top-left. If d = 0 is substituted into the first two equations,

they simplify to b−c =
1

3
and 9b−3c = 3. Multiplying the first of these resulting equations

by 3 gives 3b− 3c = 1, which can be subtracted from 9b− 3c = 3 to get 6b = 2 or b =
1

3
.

Since b − c =
1

3
, this means c = 0. Therefore, one possibility for the polynomial f(x) is

f(x) =
1

3
x3 +

1

3
x2.

The other three systems can be solved in a similar way. This gives a total of four possibil-
ities for f(x) which are listed below in factored form:

1

3
x3 +

1

3
x2 =

1

3
x2(x+ 1)

1

3
x3 +

2

3
x2 +

4

3
x+ 1 =

1

3
(x+ 1)(x2 + x+ 3)

1

3
x3 +

1

2
x2 +

1

6
x =

1

6
x(x+ 1)(2x+ 1)

1

3
x3 +

5

6
x2 +

3

2
x+ 1 =

1

6
(x+ 1)(2x2 + 3x+ 6)

When n = 1 is substituted into the first, second, and fourth polynomials, the outputs are
2

3
,
10

3
, and

11

3
, respectively. None of these are integers, which means f(x) cannot be any

of these three polynomials since f(n) must be an integer when n is an integer. Therefore,
the only possibility is that

f(x) =
1

3
x3 +

1

2
x2 +

1

6
x =

x(x+ 1)(2x+ 1)

6
.
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We now verify that f(x) has the properties claimed in the question.

To see that f(n) is an integer for every integer n, we will show that n(n+ 1)(2n+ 1), the
numerator of f(n), must be a multiple of 6. Since n and n + 1 are consecutive integers,
one of them must be even. This means n(n + 1)(2n + 1) is even. If either n or n + 1 is a
multiple of 3, then n(n+ 1)(2n+ 1) is a multiple of 3. If neither n nor n+ 1 is a multiple
of 3, then n must be 1 more than a multiple of 3. That is, there is some integer k so that
n = 3k + 1. Then 2n+ 1 = 2(3k + 1) + 1 = 6k + 3 = 3(2k + 1), so 2n+ 1 is a multiple of
3. This shows that n(n+ 1)(2n+ 1) must be a multiple of 3. Therefore,

f(n) =
n(n+ 1)(2n+ 1)

6

is an integer for every integer n. You may recognize that f(n) = 12 + 22 + 32 + · · · + n2,
which immediately implies f(n) is an integer.

Next, we will show that
1

3
n3 − n− 2

3
≤ f(n) or

1

3
n3 − n− 2

3
≤ 1

3
n3 +

1

2
n2 +

1

6
n

for all integers n with the possible exception of n = −2. After rearranging, this inequality
is equivalent to

0 ≤ 1

2
n2 +

7

6
n+

2

3
.

Since 6 is positive, the inequality is also equivalent to

0 ≤ 6

(
1

2
n2 +

7

6
n+

2

3

)
= 3n2 + 7n+ 4 = (3n+ 4)(n+ 1).

The polynomial (3x + 4)(x + 1) is quadratic and has roots x = −1 and x = −4

3
. The

leading coefficient is positive, which means it can only take negative values strictly between

−4

3
and −1. There are no integers in this range, which means (3n+ 4)(n+ 1) ≥ 0 for all

integers n. Thus, the original inequality also holds for all integers n including n = −2.

Now consider the polynomial (x + 1)(3x + 8) which has roots x = −8

3
and x = −1. The

only integer n for which (n+ 1)(3n+ 8) is negative is n = −2 since −2 is the only integer

between −8

3
and −1. Therefore, for all integers n ̸= −2, we have

0 ≤ (n+ 1)(3n+ 8)

which we expand and divide by 6 to get

0 ≤ 1

2
n2 +

11

6
n+

4

3
.

After rearranging and adding
1

3
n3 to both sides, we have that

f(n) =
1

3
n3 +

1

2
n2 +

1

6
n ≤ 1

3
n3 + n2 + 2n+

4

3
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for all integers n ̸= −2. Combining this with the other inequality, we have now shown that

1

3
n3 − n− 2

3
≤ f(n) ≤ 1

3
n3 + n2 + 2n+

4

3

for all integers n ̸= −2.

Finally, let’s compute f(102025)−f(102025−1). To do this, we will work out f(n)−f(n−1)
for general n and substitute n = 102025 into the resulting expression.

f(n)− f(n− 1) =
n(n+ 1)(2n+ 1)

6
− (n− 1)[(n− 1) + 1][2(n− 1) + 1]

6

=
n[(n+ 1)(2n+ 1)− (n− 1)(2n− 1)]

6

=
n(2n2 + n+ 2n+ 1− 2n2 + n+ 2n− 1)

6

=
n(6n)

6
= n2

Therefore, f(102025) − f(102025 − 1) = (102025)2 = 104050. As mentioned earlier, the poly-
nomial f(x) has the special property that f(n) = 12 + 22 + 32 + · · ·+ n2 for every n ≥ 1.
It follows from this property that f(n)− f(n− 1) = n2.

Notice that we used the fact that n ̸= −2 to prove the inequality f(n) ≤ 1
3
n3 + n2 + 2n+ 4

3
. It

is worth thinking about what happens at n = −2, and seeing if you can figure out why we had
to exclude n = −2.
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