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Problem of the Month

Solution to Problem 0: Equations in the integers
September 2025

Several times throughout this solution, we will use the following fact: if ged(m,n) = 1 and km
is a multiple of n, then k is a multiple of n. You might want to think about why this is true
before reading the solution.

1. Suppose x and y are integers such that 5x 4+ 8y = 120. Rearranging 5z + 8y = 120, we
have that 5z = 120 — 8y, and after factoring 8 out of the right side, we get 5z = 8(15 —y).
This means 5z is a multiple of 8. Using the fact given before the solution and the fact
that ged(5,8) = 1, we get that x is a multiple of 8. Similarly, 8y = 120 — 5z = 5(24 — ),
so y is a multiple of 5.

Now suppose x and y are non-negative integers such that 5x + 8y = 120. By the previous
paragraph, there are integers X > 0 and Y > 0 such that x = 8X and y = 5Y, which
means 5(8X) + 8(5Y) = 120. Dividing by 40, we get X +Y = 3. Since X and Y are
non-negative integers, (X, Y’) must be one of the four pairs (0, 3), (1,2), (2,1), and (3,0).

Since x = 8X and y = 5Y, this means the only possible non-negative solutions are

r=0 r=38 r =16 =24
y=15 y =10 y=>5 y=0

It is easy to check that each of these pairs is indeed a non-negative solution to 5x+8y = 120.

2. Observe the following:

5(4) + 8(1) = 28
5(1) + 8(3) = 29
5(6) + 8(0) = 30
5(3) + 8(2) = 31
5(0) + 8(4) = 32

which shows that 5x + 8y = ¢ has a non-negative solution when ¢ = 28, ¢ = 29, ¢ = 30,
c =31, and ¢ = 32.

Next, observe that if 5x 4+ 8y = ¢ has a non-negative solution (z,y) = (u,v), then
5(u+1)+8v=>5u+8v+5
=c+ 9,

so bz +8y = ¢+5 has a non-negative solution, namely (z,y) = (u+1,v). Since 5x+8y = 28
has a non-negative solution, so does 5z + 8y = 28 + 5 = 33. Since bz + 8y = 29 has a
non-negative solution, so does bx + 8y = 29 + 5 = 34. Continuing in this way, we get
that 5z 4+ 8y = ¢ has a non-negative solution for ¢ = 33, ¢ = 34, ¢ = 35, ¢ = 36, and
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¢ = 37. This process can be repeated to get that 5x + 8y = ¢ has a non-negative solution
for all ¢ > 28. It was important that we started with five consecutive values of ¢ for which
5r + 8y = ¢ has a non-negative solution.

To finish the solution to this part, we will argue that b5x + 8y = 27 has no non-negative
solution. Together with the fact that 5z + 8y = ¢ has a non-negative solution for every
c > 28, this will show that the answer to the question is ¢ = 27.

Suppose bx+8y = 27 for non-negative integers = and y. Rearranging, we have 8y = 27—5x.
Since x is a non-negative integer, 27 —5z has a units digit of either 7 or 2. However, 27 —5x
must be a non-negative multiple of 8 since it is equal to 8y. There are no multiples of 8
with a units digit of 7, and the smallest nonnegative multiple of 8 with a units digit of
2 is 32. Therefore, 27 — 5z cannot be a non-negative multiple of 8 if x is a non-negative
integer, so there are no non-negative solutions to 5z + 8y = 27.

Before moving on to the solutions to Questions 3, 4, and 5, we will state two facts that will come
up in their solutions. The proofs of these facts can be found at the end of this document.

Fact 1: Suppose a and b are positive integers with ged(a,b) = 1. For every integer ¢, the
equation ax + by = c has an integer solution.

Fact 2: Suppose a and b are positive integers with ged(a,b) = 1, that ¢ is an integer, and that
(z,y) = (u,v) is an integer solution to az + by = ¢ (which must exist by Fact 1). For every
integer k, the pair (u + bk,v — ak) is a solution to ax + by = c¢. In addition, this gives every
integer solution to ax + by = c.

Fact 2 says that finding all integer solutions to ax + by = ¢ comes down to finding one integer
solution.

3. In Question 2, we saw that when a = 5 and b = 8, the answer is ¢ = 27. It may take
some experimentation to guess a pattern. For example, if ¢ = 4 and b = 3, you will find
that ¢ = 5 is the smallest positive integer for which az + by = ¢ has no non-negative
solution. For another example, if a = 6 and b = 7, then ¢ = 29 is the largest positive
integer for which ax + by = ¢ has no non-negative solution. Even now, it might be tricky
to notice a pattern. If 1 is added to each of these largest values of ¢, one gets 28 for a =5
and b = 8, 6 for a = 4 and b = 3, and 30 for a = 6 and b = 7. These integers factor
as 28 =4 x 7,6 =3 x 2, and 30 = 5 x 6. With such an observation, you might guess
that the largest integer ¢ for which there are no non-negative solutions to ax 4+ by = c is
(a—1)(b—1)—1=ab—a—b. This would be a correct guess, and we will now prove it!

We will prove two statements.

e If a and b are positive integers with ged(a, b) = 1 and ax + by = ¢ has no non-negative
solution, then ¢ < ab —a — b.

e If a and b are positive integers with ged(a,b) = 1, then ax + by = ab — a — b has no
non-negative solution.

The first bullet point implies that if ¢ > ab — a — b, then ax + by = ¢ does have a non-
negative solution. Therefore, the two statements above combine to imply that the answer
to the question is ¢ = ab — a — b.



Assume that c is a positive integer such that ax + by = ¢ has no non-negative solution. We
a ¢
can rearrange ax+by = ctoy = ——-x+—-. This is the equation of a line with negative slope

and a positive y-intercept. Furthermore, the solutions to ax + by = ¢ are exactly the lattice
points that lie on the line [A lattice point is a point in the plane whose coordinates are
both integers.|. By Fact 2, the integer solutions to az +by = ¢, which are the lattice points
on the line, are exactly the ordered pairs of the form (u+bk,v—ak) where (z,y) = (u,v) is
any fixed integer solution and k takes every integer value. This means there are infinitely
many lattice points on the line and that their z-coordinates occur at * = u and every
integer multiple of b to the right and left of u. Likewise, their y-coordinates occur at v and
every integer multiple of a above and below v.

Thus, there must be a solution (z,y) = (u,v) with the property that u < 0 but u+b > 0.

a c

We will fix the solution (z,y) = (u,v) to be the lattice point on the line y = —3% + 5

that is closest to the y-axis among those with a negative x-coordinate. Since u < 0 and u
a c

is an integer, it must be that « < —1. The diagram below depicts the line y = —Ex + b

as well as the lattice point (u,v), and the next lattice point on the line moving from
(u,v) to the right. We are assuming there are no non-negative solutions, which means the
next lattice point cannot be in the first quadrant. However, it has a positive z-coordinate
by the assumption on (u,v), so it must appear below the z-axis in order to fail to be a
non-negative solution.
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The next lattice point on the line moving to the right from (u,v) is (v + b,v — a). As
mentioned above, it must be in the fourth quadrant, which means v — a < 0. Since v
and a are both integers, so is v — a, which means v — a < —1 which can be rearranged to
v<a-—1.

a + C
= ——X —
I=73" 7y

We now have that au + bv = c as well as u < —1 and v < a — 1. Therefore,

c=au+bv
<a(-1)+bla—1)
=ab—a—0b.
Therefore, if ax + by = ¢ has no non-negative solutions, then ¢ < ab — a — b, as claimed.

For the second statement, suppose ax + by = ab — a — b for integers x and y. Rearranging
and factoring, we get a(x + 1) 4+ b(y + 1) = ab. Since both a(z + 1) and ab are multiples



of a, it must also be the case that b(y + 1) is a multiple of a. We are assuming that
ged(a, b) = 1, so this means y + 1 is a multiple of a. Therefore, there is some integer Y so
that y +1 = aY. By similar reasoning, there is an integer X such that x +1 = 0.X.

Substituting y + 1 = aY and z + 1 = bX into a(z + 1) + b(y + 1) = ab, we get the
equation abX + abY = ab, and since ab must be positive, we can divide through by it to
get X +Y = 1. If the sum of two integers is 1, then one of them must be non-positive.

Therefore, either X < 0 or Y < 0. By how X and Y are defined, this means either
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y+ 1 <0, which implies that one of x and y is negative. Therefore, no integer solution to
ar + by = ab — a — b can be non-negative.

< 0. Since a and b are positive, this means either x +1 < 0 or

As discussed earlier, we have shown that ax 4+ by = ¢ has a non-negative solution for every
integer ¢ > ab—a—b and we have now shown that ax+ by = ab—a—0b has no non-negative
solution. Therefore, ¢ = ab— a — b is the largest integer with the property that ax + by = ¢
has no non-negative solution.

. We will show that for every positive integer n, there are exactly ab positive integers ¢ for
which there are exactly n non-negative solutions to ax + by = c.

Suppose ¢ has the property that there are exactly n non-negative solutions to ax + by = c.
Following the reasoning in the solution to 3., we are interested in lattice points on the

a c
line y = ——x 4+ —. As discussed earlier, there are infinitely many such lattice points and
we can choose (u,v) to be the lattice point on the line with the property that v < 0 and

u+ b > 0. The next n lattice points on the line moving to the right are those of the form
(u+ kb,v — ka) where k ranges over the integers from 1 through n inclusive.

In order for there to be exactly n non-negative solutions, the first n lattice points on the
line to the right of (u,v) must be in the first quadrant. The diagram below is similar to
the one in the solution to Question 3, but it depicts the situation for n = 5. The point
(u,v) is in the second quadrant, the next five moving along the line to the right are in
the first quadrant, and the next lattice point, (v + (n 4+ 1)b,v — (n + 1)a), is in the fourth

quadrant.
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For (u + (n + 1)b,v — (n + 1)a) to be the first lattice point on the line to the right of
(u,v) that does not correspond to a non-negative solution, it must not be in the first
quadrant while (u + nb,v — na) must be in the first quadrant. Since k and b are positive,



the assumptions on (u,v) imply that (u + kb, v — ka) has a non-negative x-coordinate for
every positive integer k. This means (u+ nv, v — na) has a non-negative y-coordinate and
(u+ (n+1)b,v — (n+ 1)a) has a negative y-coordinate. This leads to the two inequalities
v—na>0and v — (n+1)a <O0.

From our assumption about ¢, we have deduced that there is a nonnegative solution (u,v)
satisfying v and v satisfying v < 0, u+b >0, v —na > 0, and v — (n + 1)a < 0. Since
all quantities are integers, we can replace the inequality © < 0 with « < —1 and replace
v—(n+1)a <0 with v — (n + 1)a < —1. Rearranging and combining these inequalities,
we have

—b<u< -1 (1)
na<v<(n+1l)a—1 (2)

There are b integers u satisfying (1) and there are a integers v satisfying (2). We now have
that if ¢ is such that there are exactly n non-negative solutions to ax 4+ by = ¢, then there
are integers u and v satisfying (1) and (2) respectively, as well as au + bv = c.

Next, we suppose u satisfies (1) and v satisfies (2) and define ¢ = au+ bv. The inequalities
(1) and (2) imply u < 0, u+b > 0, v —na > 0, and v — (n + 1)a < 0. Following the
reasoning from earlier in this part and in the solution to 3, this means ax + by = c¢ has
exactly n non-negative solutions. Moreover, since n > 1, we have

c=au+bv > a(=b) +b(na) > —ab+ ab =0

which says that ¢ is non-negative. [It is worth remarking here that if n = 0, there are
still are exactly ab integers ¢ for which there are n non-negative solutions to ax + by = c.
However, some of those integers will be negative. With n > 1, all of the integers ¢ for which
there are exactly n non-negative solutions to azx + by = ¢ happen to be non-negative.|

We have that az + by = ¢ has exactly n non-negative solutions exactly when c takes the
form ¢ = au + bv for some integers u satisfying (1) and v satisfying (2). Since there are b
choices for an integer u satisfying (1) and a choices for an integer v satisfying (2), there
are at most ab values of ¢ that satisfy these conditions. To finish the argument, we must
show that we indeed get ab distinct integers when computing au + bv for every possible
choice of u satistying (1) and v satisfying (2).

To do this, we will assume that u; and uy both satisfy (1), that v; and vy both satisfy (2),
and that au;+bv; = aus+bvs and deduce that u; = ug and vy = vy. By possibly relabelling,
we can assume that u; > us. With these assumptions, rearrange au; + bv; = aug + buy to
get a(u; — uz) = b(vg — v1). This means a(u; — us) is a multiple of b. Since ged(a,b) = 1,
uy — ug is a multiple of b. However, both u; and us are between —b and —1 inclusive, so
their difference is smaller than b. We have that 0 < u; — uy < b is a multiple of b. The
only possibility is that u; — us = 0, or u; = uy. This means b(v; — vg) = 0 as well, and
since b # 0, v; = vs.

The question asked for the answer with n = 2025, but we have shown that the answer is
ab for every integer n > 1, which includes n = 2025.

. From the reasoning in 4., we know that the positive integers ¢ with the property that
axr + by = c has exactly n non-negative solutions are exactly the integers of the form
au+bv = c where —b<u < —-landna<v<(n+1)a—1.
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Observe that there are exactly b possible values of u and a possible values of v, so we need
to add ab integers together.

We will do this by examining the u’s first, then the v’s. Observe that the sum contains
exactly a copies of au for every w satisfying —b < u < —1. Therefore, the “u part” of the

sum 1s
a(—a—2a—3a—4a—---—(b—1)a — ba)
=—a’(1+2+3+-+(b—1)+0)
B _aQb(b—l—l)
R —

By similar reasoning, the sum contains exactly b copies of the term bv for every v satisfying
na <v<(n+1)a—1=mna+ a— 1. This means the “v part” of the sum is

b(bna + b(na + )+b(na+2)+---+b(na+a—2)+b(na+a—1))
=b(na+ (na+1)+ (na+2)+ -+ (na+a—2)+ (na+a—1))
=b*(a(na) + 14243+ +(a—2)+ (a—1))
=a’’n+b*(1+2+3+--+(a—2)+ (a—1))

2
—1
2b2n—|—b (a2 )a

=a

Therefore, the sum we seek is

b (a—1 2h(b+1 b
a’b*n + (a2 Ja_a (2+ )—az(?abn—i-b(a—l)—a(b—l— 1))

b
:%(Qabn—l—ab—b—ab—a)

b
:a2 (2abn —a —b).

As promised, we now include proofs of Fact 1 and Fact 2, which were stated between the
solutions to Questions 2 and 3. The proof of Fact 1 makes use of the fact that if ged(a,b) = 1,
then az 4 by = 1 always has an integer solution. This is a well known fact from number theory
that you may wish to look up.

Fact 1: Suppose a and b are positive integers with ged(a,b) = 1. For every integer ¢, the
equation ax + by = ¢ has an integer solution.

Proof. There are integers u' and v such that au’ + bv' = 1 (see above). Setting u = cu’ and
v = v, we have au + bv = acu’ + bev' = c(av + ') = ¢(1) = c. O

Fact 2: Suppose a and b are positive integers with ged(a,b) = 1, that ¢ is an integer, and that
(x,y) = (u,v) is an integer solution to ax + by = ¢ (which must exist by Fact 1). For every
integer k, the pair (u + bk,v — ak) is a solution to ax + by = c¢. In addition, this gives every
integer solution to ax + by = c.



Proof. To see that (u + bk,v — ak) is a solution, we can substitute and simplify:

a(u + bk) + b(v — ak) = au + abk + bv — abk
=au+ bv
=c
since (z,y) = (u,v) is a solution to ax + by = ¢ by assumption.

To see that every solution takes the form (u + bk, v — ak) is slightly trickier and requires use of
the fact that ged(a,b) = 1.

Suppose (z,y) = (v/,v') is also a solution to ax + by = ¢. This means au’ + bv' = c. We also
have that au + bv = ¢, so we can subtract to get

(au+bv) — (au' +bv') =c—c=0

which can be rearranged and factored to get a(u — u) = b(v —v’).

In the equation above, a, b, v’ — u, and v — v" are all integers, and so we have that a(u' — u) is
a multiple of b. Since ged(a,b) = 1, v’ — w is a multiple of b, which means there is some integer
k such that v’ — u = bk. Substituting this into a(u’ — u) = b(v — v') gives abk = b(v — v'), and
after cancelling b from both sides, we have v — v’ = ak.

Rearranging v’ — u = bk and v —v' = ak to v/ = u+ bk and v' = v — ak shows that the solution
(x,y) = (u',v') takes the form (u + bk,v — ak), as claimed. O



