Problem of the Month Problem 0: Equations in the integers

September 2025

Suppose a, b, and c are positive integers. In this problem, a non-negative solution to the equation ax + by = c is a pair (x, y) = (u, v) of integers with $u \ge 0$ and $v \ge 0$ satisfying au + bv = c. For example, (x, y) = (7, 0) and (x, y) = (3, 3) are non-negative solutions to 3x + 4y = 21, but (x, y) = (-1, 6) is not.

- 1. Determine all non-negative solutions to 5x + 8y = 120.
- 2. Determine the largest positive integer c with the property that there is no non-negative solution to 5x + 8y = c.

In Questions 3, 4, and 5, a and b are assumed to be positive integers satisfying gcd(a, b) = 1.

- 3. Determine the largest non-negative integer c with the property that there is no non-negative solution to ax + by = c. The value of c should be expressed in terms of a and b.
- 4. Determine the number of non-negative integers c for which there are exactly 2025 non-negative solutions to ax + by = c. As with Question 3, the answer should be expressed in terms of a and b.
- 5. Suppose $n \ge 1$ is an integer. Determine the sum of all non-negative integers c for which there are exactly n nonnegative solutions to ax + by = c. The answer should be expressed in terms of a, b, and n.

Fact: You may find it useful that for integers a and b with gcd(a, b) = 1, there always exist integers a and b such that ax + by = 1, though a and b may not be non-negative.