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1. (a) After 7 minutes, Abi has a total of 30 + (7× 2) = 30 + 14 = 44 tokens.

(b) After 12 minutes, Desiree had received 12 × 2 = 24 additional tokens. After 12 minutes,
she had 37 tokens in total, and so Desiree started with 37− 24 = 13 tokens.
A total of 80 tokens were initially distributed, and so Carl started with 80 − 13 = 67
tokens.

(c) At the start, Essi received 12 tokens and Francis received 100− 12 = 88 tokens.
After t minutes, Essi has 12 + 2t tokens and Francis has 88 + 2t tokens.
After t minutes, Francis has 3 times as many tokens as Essi, and so 88 + 2t = 3(12 + 2t).

Solving for t, we get 88 + 2t = 36 + 6t or 52 = 4t, and so t =
52

4
= 13.

2. (a) Solution 1

Since 10% of 5 cm is
10

100
× 5 cm = 0.1× 5 cm = 0.5 cm, then the length of the resulting

rectangle is 5 cm + 0.5 cm = 5.5 cm, and its area is 5.5 cm× 4 cm = 22 cm2.

Solution 2

When 5 cm is increased by 10%, the resulting length is

(
1 +

10

100

)
× 5 cm or 1.1× 5 cm

which is equal to 5.5 cm.
Thus, the area of the resulting rectangle is 5.5 cm× 4 cm = 22 cm2.

(b) Solution 1
A square with area 100 cm2 has both length and width equal to

√
100 cm2 = 10 cm.

Since 30% of 10 cm is
30

100
× 10 cm = 0.3× 10 cm = 3 cm, then the length of the resulting

rectangle is 10 cm + 3 cm = 13 cm, and its width is 10 cm− 3 cm = 7 cm.
The area of the resulting rectangle is 13 cm × 7 cm = 91 cm2 which is
91 cm2

100 cm2
× 100% = 91% of the area of the original square.

Therefore, the area decreased by 100%− 91% = 9%.

Solution 2
A square with area 100 cm2 has both length and width equal to

√
100 cm2 = 10 cm.

When 10 cm is increased by 30%, the resulting length is

(
1 +

30

100

)
×10 cm or 1.3×10 cm

which is equal to 13 cm.

When 10 cm is decreased by 30%, the resulting length is

(
1− 30

100

)
×10 cm or 0.7×10 cm

which is equal to 7 cm.
Thus, the area of the resulting rectangle is 13 cm × 7 cm = 91 cm2 which is
100 cm2 − 91 cm2 = 9 cm2 less than the area of the original square.

Therefore, the area decreased by
9 cm2

100 cm2
× 100% = 9%.

(c) Suppose the length of the original rectangle is ` and its width is w.

Then the length of the resulting rectangle is
(

1 +
x

100

)
×`, and its width is

(
1− 20

100

)
×w

or
8

10
w.

The area of the original rectangle, `w, is equal to the area of the resulting rectangle(
1 +

x

100

)
× `× 8

10
w.
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Setting the areas equal and simplifying, we get the following equivalent equations:(
1 +

x

100

)
× `× 8

10
w = `w(

1 +
x

100

)
× 8

10
× `w = `w(

1 +
x

100

)
× 8

10
= 1 (since `w > 0)

1 +
x

100
=

10

8
x

100
=

10

8
− 8

8
x

100
=

2

8

x =
1

4
× 100

and so x = 25.

3. (a) We begin by determining where the parabola and the line intersect. Setting the right-hand
sides of the equations equal and solving, we get

x2 + 3x− 12 = 2x

x2 + x− 12 = 0

(x + 4)(x− 3) = 0

and so x = −4 and x = 3.
Applying the given formula with p = 3 and q = −4, the area enclosed by the parabola

and the line is
(3− (−4))3

6
=

73

6
=

343

6
.

(b) Suppose the x-coordinates of V and W are the integers v and w respectively, with v > w.
Then v and w are the solutions of the equation mx − 6 = −x2 + 7x − 90, which when
simplified is x2 + (m− 7)x + 84 = 0.
Therefore, the equation x2 + (m − 7)x + 84 = 0 is equivalent to (x − v)(x − w) = 0 or
x2 − (v + w)x + vw = 0. Thus, the product of the roots, vw, is equal to 84.

The area enclosed by the parabola and the line is equal to
(v − w)3

6
, which is as small as

possible when v − w is as small as possible.
To determine the smallest possible enclosed area, we must determine the smallest possible
value of v − w for integers v and w with vw = 84 and v > w.
The positive factor pairs (w, v) of 84 are (1, 84), (2, 42), (3, 28), (4, 21), (6, 14), and (7, 12).
The smallest possible value of v − w is equal to 5, which occurs when v = 12 and w = 7.
Each of the factors listed can also be negative, from which we similarly determine that
the smallest possible value of v − w is equal to 5 when v = −7 and w = −12.
Returning to the equivalent equations x2 + (m− 7)x+ 84 = 0 and x2− (v+w)x+ vw = 0,
we have m− 7 = −(v + w), and so m = 7− (v + w).
When v = 12 and w = 7, we get m = 7− (12 + 7) = −12.
When v = −7 and w = −12, we get m = 7− (−7− 12) = 26.
The two possible values of m for which the area enclosed by the line and the parabola is
as small as possible are −12 and 26.
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(c) Suppose the x-coordinates of T and U are the integers t and u respectively, with t > u.
Then t and u are the solutions of the equation x2 + (g + h)x + 9 = −x2 + gx + h, which
when simplified is 2x2 + hx + 9− h = 0.
Therefore, the equation 2x2 + hx + 9 − h = 0 is equivalent to (x− t)(x − u) = 0, and so

x2 +
h

2
x +

9− h

2
= 0 is equivalent to x2 − (t + u)x + tu = 0.

Equating the constant terms, we get tu =
9− h

2
(equation (1)), and equating the

coefficients of the linear terms, we get −(t + u) =
h

2
or t + u = −h

2
(equation (2)).

Consider the line passing through points T and U , as shown.
The area enclosed by this line and the parabola with equation

y = −x2 + gx + h is equal to
(t− u)3

6
.

Similarly, the area enclosed by this line and the parabola with

equation y = x2 + (g + h)x + 9 is also equal to
(t− u)3

6
.

y

x

T

U

Thus, the area enclosed by the parabolas is equal to 2× (t− u)3

6
=

(t− u)3

3
.

The area enclosed by the parabolas is
3087

8
, and so

(t− u)3

3
=

3087

8

(t− u)3 =
9261

8

t− u =
3

√
9261

8

t = u +
21

2
(equation (3))

Substituting equation (3) into (2), we get u +
21

2
+ u = −h

2
or h = −4u− 21.

Substituting h = −4u− 21 and equation (3) into equation (1) and solving, we get

tu =
9− h

2(
u +

21

2

)
u =

9− (−4u− 21)

2

(2u + 21)u = 9 + 4u + 21

2u2 + 17u− 30 = 0

(2u− 3)(u + 10) = 0

and so the solutions are u =
3

2
and u = −10.

When u =
3

2
, h = −4 · 3

2
− 21 = −27 and when u = −10, h = −4(−10)− 21 = 19.

The possible values of h for which the area enclosed by the parabolas is 3087
8

are −27 and
19.
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4. (a) The third term of the sequence is 45 · 3
5

= 27 and the first term is 45÷ 3
5

= 45 · 5
3

= 75.
The sum of the first three terms of the sequence is 75 + 45 + 27 = 147.

(b) The common ratio, r, of the geometric sequence x, 12, y is r =
12

x
, and also r =

y

12
.

Thus
y

12
=

12

x
or xy = 144.

Substituting y = 25− x into xy = 144 and solving, we get

x(25− x) = 144

25x− x2 = 144

x2 − 25x + 144 = 0

(x− 9)(x− 16) = 0

and so x = 9 and x = 16. When x = 9, y = 25−9 = 16 and when x = 16, y = 25−16 = 9.
The possible pairs of positive integers (x, y) are (9, 16) and (16, 9).

(c) Suppose the geometric sequence has common ratio r, so that b = ar, c = ar2, and d = ar3.
Since a + b + c + d = 65, then

a + ar + ar2 + ar3 = 65

a(1 + r + r2 + r3) = 65

a((1 + r) + r2(1 + r)) = 65

a(1 + r)(1 + r2) = 65

Since r =
b

a
and both a and b are non-zero integers, then r is a rational number.

Suppose that r =
m

n
for some non-zero integers m and n having no common factors (that

is, gcd(m,n) = 1).
Then a(1 + r)(1 + r2) = 65 becomes

a
(

1 +
m

n

)(
1 +

(m
n

)2)
= 65

a

(
m + n

n

)(
m2 + n2

n2

)
= 65

a

n3
(m + n)(m2 + n2) = 65

Since d is an integer, and d = ar3 = a · m
3

n3
, then a · m

3

n3
is an integer.

Since gcd(m,n) = 1, then m3 and n3 have no common divisors. We can conclude that

n3 divides a which means that
a

n3
is an integer.

Suppose p =
a

n3
, then p(m + n)(m2 + n2) = 65 for integers m,n, p.

Each of p, m + n and m2 + n2 is an integer, and thus a divisor of 65.
The divisors of 65 are ±1,±5,±13, and ±65.
Since m and n are non-zero integers, then m2 + n2 ≥ 2 and m2 + n2 ≥ m + n.
We also note that the factors p and m+n are either both positive or they are both negative
since m2 + n2 is positive for all values of m and n. This leads us to consider 3 possible
cases: m2 + n2 = 65, m2 + n2 = 13, and m2 + n2 = 5.
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Case 1: m2 + n2 = 65
If m2 + n2 = 65, then m + n = 1 and p = 1 or m + n = −1 and p = −1.
If m2 + n2 = 65, the integer solutions are (m,n) = (±1,±8) and (±4,±7) and (±8,±1)
and (±7,±4). For each of these, m+n 6= ±1, so there are no solutions when m2+n2 = 65.

Case 2: m2 + n2 = 13
When m2 + n2 = 13, the integer solutions are (m,n) = (±3,±2) and (±2,±3).
This gives the following 8 possibilities:

(i) (m,n) = (3, 2), so m + n = 5 and p = 1 =
a

n3
, and so a = 1 · 23 = 8.

In this case, r =
m

n
=

3

2
, and so the quadruple (a, b, c, d) = (8, 12, 18, 27) satisfies the

given conditions.

(ii) (m,n) = (−3,−2), so m + n = −5 and p = −1 =
a

n3
, and so a = −1 · (−2)3 = 8.

In this case, r =
m

n
=

3

2
, and so we get the same quadruple as in (i).

(iii) (m,n) = (3,−2), so m + n = 1 and p = 5 =
a

n3
, and so a = 5 · (−2)3 = −40.

In this case, r =
m

n
= −3

2
, and so we get (a, b, c, d) = (−40, 60,−90, 135).

(iv) (m,n) = (−3, 2), so m + n = −1 and p = −5 =
a

n3
, and so a = −5 · (2)3 = −40.

In this case, r = −3

2
, and so we get the same quadruple as in (iii).

(v) (m,n) = (2, 3), so m + n = 5 and p = 1, and so a = 1 · 33 = 27.

In this case, r =
2

3
, and so we get (a, b, c, d) = (27, 18, 12, 8).

(vi) (m,n) = (−2,−3) gives the same quadruple as in (v).

(vii) (m,n) = (−2, 3), so m + n = 1 and p = 5, and so a = 5 · 33 = 135.

In this case, r =
m

n
= −2

3
, and so we get (a, b, c, d) = (135,−90, 60,−40).

(viii) (m,n) = (2,−3) gives the same quadruple as in (vii).

Case 3: m2 + n2 = 5
When m2 + n2 = 5, the integer solutions are (m,n) = (±2,±1) and (±1,±2).
Since m2 + n2 ≥ m + n, then m + n = 1 and p = 13, or m + n = −1 and p = −13.
This gives the following 4 possibilities:

(i) (m,n) = (2,−1), so m + n = 1 and p = 13 =
a

n3
, and so a = 13 · (−1)3 = −13.

In this case, r = −2, and so we get (a, b, c, d) = (−13, 26,−52, 104).

(ii) (m,n) = (−2, 1) gives the same quadruple as in (i).

(iii) (m,n) = (−1, 2), so m + n = 1 and p = 13, and so a = 13 · 23 = 104.

In this case, r = −1

2
, and so we get (a, b, c, d) = (104,−52, 26,−13).

(iv) (m,n) = (1,−2) gives the same quadruple as in (iii).

The quadruples of integers (a, b, c, d) so that a, b, c, d is a geometric sequence and
a+b+c+d = 65 are: (8, 12, 18, 27), (27, 18, 12, 8), (−40, 60,−90, 135), (135,−90, 60,−40),
(−13, 26,−52, 104), and (104,−52, 26,−13). We can verify that each of these quadruples
is a geometric sequence with a sum of 65.


