

The CENTRE for EDUCATION in MATHEMATICS and COMPUTING cemc.uwaterloo.ca

2025 Hypatia Contest

Thursday, April 3, 2025 (in North America and South America)

Friday, April 4, 2025 (outside of North America and South America)

Solutions

O2025 University of Waterloo

- (a) After 7 minutes, Abi has a total of $30 + (7 \times 2) = 30 + 14 = 44$ tokens. 1.
 - (b) After 12 minutes, Desiree had received $12 \times 2 = 24$ additional tokens. After 12 minutes, she had 37 tokens in total, and so Desiree started with 37 - 24 = 13 tokens. A total of 80 tokens were initially distributed, and so Carl started with 80 - 13 = 67tokens.
 - (c) At the start, Essi received 12 tokens and Francis received 100 12 = 88 tokens. After t minutes, Essi has 12 + 2t tokens and Francis has 88 + 2t tokens. After t minutes, Francis has 3 times as many tokens as Essi, and so 88 + 2t = 3(12 + 2t). Solving for t, we get 88 + 2t = 36 + 6t or 52 = 4t, and so $t = \frac{52}{4} = 13$.
- 2. (a) Solution 1

Since 10% of 5 cm is $\frac{10}{100} \times 5$ cm = 0.1 × 5 cm = 0.5 cm, then the length of the resulting rectangle is 5 cm + 0.5 cm = 5.5 cm, and its area is 5.5 cm \times 4 cm = 22 cm².

Solution 2

When 5 cm is increased by 10%, the resulting length is $\left(1 + \frac{10}{100}\right) \times 5$ cm or 1.1×5 cm which is equal to 5.5 cm.

Thus, the area of the resulting rectangle is $5.5 \text{ cm} \times 4 \text{ cm} = 22 \text{ cm}^2$.

(b) Solution 1

A square with area 100 cm² has both length and width equal to $\sqrt{100 \text{ cm}^2} = 10 \text{ cm}$. Since 30% of 10 cm is $\frac{30}{100} \times 10$ cm = 0.3 × 10 cm = 3 cm, then the length of the resulting rectangle is 10 cm + 3 cm = 13 cm, and its width is 10 cm - 3 cm = 7 cm.

The area of the resulting rectangle is $13 \text{ cm} \times 7 \text{ cm} = 91 \text{ cm}^2$ which is $\frac{91 \text{ cm}^2}{100 \text{ cm}^2} \times 100\% = 91\%$ of the area of the original square.

Therefore, the area decreased by 100% - 91% = 9%.

Solution 2

A square with area 100 cm² has both length and width equal to $\sqrt{100 \text{ cm}^2} = 10 \text{ cm}$.

When 10 cm is increased by 30%, the resulting length is $\left(1 + \frac{30}{100}\right) \times 10$ cm or 1.3×10 cm which is equal to 13 cm.

When 10 cm is decreased by 30%, the resulting length is $\left(1 - \frac{30}{100}\right) \times 10$ cm or 0.7×10 cm which is equal to 7 cm.

Thus, the area of the resulting rectangle is $13 \text{ cm} \times 7 \text{ cm} = 91 \text{ cm}^2$ which is $100 \text{ cm}^2 - 91 \text{ cm}^2 = 9 \text{ cm}^2$ less than the area of the original square.

Therefore, the area decreased by $\frac{9 \text{ cm}^2}{100 \text{ cm}^2} \times 100\% = 9\%$.

(c) Suppose the length of the original rectangle is ℓ and its width is w.

Then the length of the resulting rectangle is $\left(1 + \frac{x}{100}\right) \times \ell$, and its width is $\left(1 - \frac{20}{100}\right) \times w$ 8

or
$$\frac{0}{10}w$$
.

The area of the original rectangle, ℓw , is equal to the area of the resulting rectangle $\left(1 + \frac{x}{100}\right) \times \ell \times \frac{8}{10}w.$

Setting the areas equal and simplifying, we get the following equivalent equations:

$$\left(1 + \frac{x}{100}\right) \times \ell \times \frac{8}{10}w = \ell w$$

$$\left(1 + \frac{x}{100}\right) \times \frac{8}{10} \times \ell w = \ell w$$

$$\left(1 + \frac{x}{100}\right) \times \frac{8}{10} = 1 \quad (\text{since } \ell w > 0)$$

$$1 + \frac{x}{100} = \frac{10}{8}$$

$$\frac{x}{100} = \frac{10}{8} - \frac{8}{8}$$

$$\frac{x}{100} = \frac{2}{8}$$

$$x = \frac{1}{4} \times 100$$

and so x = 25.

3. (a) We begin by determining where the parabola and the line intersect. Setting the right-hand sides of the equations equal and solving, we get

$$x^{2} + 3x - 12 = 2x$$

$$x^{2} + x - 12 = 0$$

$$(x + 4)(x - 3) = 0$$

and so x = -4 and x = 3.

Applying the given formula with p = 3 and q = -4, the area enclosed by the parabola and the line is $\frac{(3 - (-4))^3}{6} = \frac{7^3}{6} = \frac{343}{6}$.

(b) Suppose the x-coordinates of V and W are the integers v and w respectively, with v > w. Then v and w are the solutions of the equation $mx - 6 = -x^2 + 7x - 90$, which when simplified is $x^2 + (m - 7)x + 84 = 0$.

Therefore, the equation $x^2 + (m-7)x + 84 = 0$ is equivalent to (x-v)(x-w) = 0 or $x^2 - (v+w)x + vw = 0$. Thus, the product of the roots, vw, is equal to 84.

The area enclosed by the parabola and the line is equal to $\frac{(v-w)^3}{6}$, which is as small as possible when v-w is as small as possible.

To determine the smallest possible enclosed area, we must determine the smallest possible value of v - w for integers v and w with vw = 84 and v > w.

The positive factor pairs (w, v) of 84 are (1, 84), (2, 42), (3, 28), (4, 21), (6, 14), and (7, 12). The smallest possible value of v - w is equal to 5, which occurs when v = 12 and w = 7. Each of the factors listed can also be negative, from which we similarly determine that the smallest possible value of v - w is equal to 5 when v = -7 and w = -12.

Returning to the equivalent equations $x^2 + (m-7)x + 84 = 0$ and $x^2 - (v+w)x + vw = 0$, we have m - 7 = -(v+w), and so m = 7 - (v+w).

When v = 12 and w = 7, we get m = 7 - (12 + 7) = -12.

When v = -7 and w = -12, we get m = 7 - (-7 - 12) = 26.

The two possible values of m for which the area enclosed by the line and the parabola is as small as possible are -12 and 26.

(c) Suppose the x-coordinates of T and U are the integers t and u respectively, with t > u. Then t and u are the solutions of the equation $x^2 + (g+h)x + 9 = -x^2 + gx + h$, which when simplified is $2x^2 + hx + 9 - h = 0$. Therefore, the equation $2x^2 + hx + 9 - h = 0$ is equivalent to (x - t)(x - u) = 0, and so $x^{2} + \frac{h}{2}x + \frac{9-h}{2} = 0$ is equivalent to $x^{2} - (t+u)x + tu = 0$. Equating the constant terms, we get $tu = \frac{9-h}{2}$ (equation (1)), and equating the coefficients of the linear terms, we get $-(t+u) = \frac{h}{2}$ or $t+u = -\frac{h}{2}$ (equation (2)). Consider the line passing through points T and U, as shown. The area enclosed by this line and the parabola with equation $y = -x^2 + gx + h$ is equal to $\frac{(t-u)^3}{6}$. Similarly, the area enclosed by this line and the parabola with equation $y = x^2 + (g+h)x + 9$ is also equal to $\frac{(t-u)^3}{6}$. Thus, the area enclosed by the parabolas is equal to $2 \times \frac{(t-u)^3}{6} = \frac{(t-u)^3}{3}$. The area enclosed by the parabolas is $\frac{3087}{8}$, and so $\frac{(t-u)^3}{3} = \frac{3087}{8}$ $(t-u)^3 = \frac{9261}{2}$

$$t - u = \sqrt[3]{\frac{9261}{8}}$$

$$t = u + \frac{21}{2} \quad (\text{equation (3)})$$

Substituting equation (3) into (2), we get $u + \frac{21}{2} + u = -\frac{h}{2}$ or h = -4u - 21. Substituting h = -4u - 21 and equation (3) into equation (1) and solving, we get

$$tu = \frac{9-h}{2}$$

$$\left(u + \frac{21}{2}\right)u = \frac{9-(-4u-21)}{2}$$

$$(2u+21)u = 9+4u+21$$

$$2u^2 + 17u - 30 = 0$$

$$(2u-3)(u+10) = 0$$

and so the solutions are $u = \frac{3}{2}$ and u = -10. When $u = \frac{3}{2}$, $h = -4 \cdot \frac{3}{2} - 21 = -27$ and when u = -10, h = -4(-10) - 21 = 19. The possible values of h for which the area enclosed by the parabolas is $\frac{3087}{8}$ are -27 and 19. 4. (a) The third term of the sequence is $45 \cdot \frac{3}{5} = 27$ and the first term is $45 \div \frac{3}{5} = 45 \cdot \frac{5}{3} = 75$. The sum of the first three terms of the sequence is 75 + 45 + 27 = 147.

(b) The common ratio, r, of the geometric sequence x, 12, y is $r = \frac{12}{x}$, and also $r = \frac{y}{12}$. Thus $\frac{y}{12} = \frac{12}{x}$ or xy = 144.

Substituting y = 25 - x into xy = 144 and solving, we get

$$\begin{array}{rcrcrcr} x(25-x) &=& 144\\ 25x-x^2 &=& 144\\ x^2-25x+144 &=& 0\\ (x-9)(x-16) &=& 0 \end{array}$$

and so x = 9 and x = 16. When x = 9, y = 25 - 9 = 16 and when x = 16, y = 25 - 16 = 9. The possible pairs of positive integers (x, y) are (9, 16) and (16, 9).

(c) Suppose the geometric sequence has common ratio r, so that b = ar, $c = ar^2$, and $d = ar^3$. Since a + b + c + d = 65, then

$$a + ar + ar^{2} + ar^{3} = 65$$

$$a(1 + r + r^{2} + r^{3}) = 65$$

$$a((1 + r) + r^{2}(1 + r)) = 65$$

$$a(1 + r)(1 + r^{2}) = 65$$

Since $r = \frac{b}{a}$ and both *a* and *b* are non-zero integers, then *r* is a rational number. Suppose that $r = \frac{m}{n}$ for some non-zero integers *m* and *n* having no common factors (that is, gcd(m, n) = 1).

Then $a(1+r)(1+r^2) = 65$ becomes

$$a\left(1+\frac{m}{n}\right)\left(1+\left(\frac{m}{n}\right)^2\right) = 65$$
$$a\left(\frac{m+n}{n}\right)\left(\frac{m^2+n^2}{n^2}\right) = 65$$
$$\frac{a}{n^3}(m+n)(m^2+n^2) = 65$$

Since d is an integer, and $d = ar^3 = a \cdot \frac{m^3}{n^3}$, then $a \cdot \frac{m^3}{n^3}$ is an integer. Since gcd(m,n) = 1, then m^3 and n^3 have no common divisors. We can conclude that n^3 divides a which means that $\frac{a}{n^3}$ is an integer.

Suppose
$$p = \frac{a}{n^3}$$
, then $p(m+n)(m^2+n^2) = 65$ for integers m, n, p .

Each of p, m + n and $m^2 + n^2$ is an integer, and thus a divisor of 65. The divisors of 65 are $\pm 1, \pm 5, \pm 13$, and ± 65 .

Since m and n are non-zero integers, then $m^2 + n^2 \ge 2$ and $m^2 + n^2 \ge m + n$.

We also note that the factors p and m+n are either both positive or they are both negative since $m^2 + n^2$ is positive for all values of m and n. This leads us to consider 3 possible cases: $m^2 + n^2 = 65$, $m^2 + n^2 = 13$, and $m^2 + n^2 = 5$.

Case 1: $m^2 + n^2 = 65$ If $m^2 + n^2 = 65$, then m + n = 1 and p = 1 or m + n = -1 and p = -1. If $m^2 + n^2 = 65$, the integer solutions are $(m, n) = (\pm 1, \pm 8)$ and $(\pm 4, \pm 7)$ and $(\pm 8, \pm 1)$ and $(\pm 7, \pm 4)$. For each of these, $m + n \neq \pm 1$, so there are no solutions when $m^2 + n^2 = 65$. Case 2: $m^2 + n^2 = 13$ When $m^2 + n^2 = 13$, the integer solutions are $(m, n) = (\pm 3, \pm 2)$ and $(\pm 2, \pm 3)$. This gives the following 8 possibilities: (i) (m,n) = (3,2), so m + n = 5 and $p = 1 = \frac{a}{n^3}$, and so $a = 1 \cdot 2^3 = 8$. In this case, $r = \frac{m}{n} = \frac{3}{2}$, and so the quadruple (a, b, c, d) = (8, 12, 18, 27) satisfies the given conditions. (ii) (m,n) = (-3,-2), so m+n = -5 and $p = -1 = \frac{a}{n^3}$, and so $a = -1 \cdot (-2)^3 = 8$. In this case, $r = \frac{m}{n} = \frac{3}{2}$, and so we get the same quadruple as in (i). (iii) (m,n) = (3,-2), so m+n = 1 and $p = 5 = \frac{a}{n^3}$, and so $a = 5 \cdot (-2)^3 = -40$. In this case, $r = \frac{m}{n} = -\frac{3}{2}$, and so we get (a, b, c, d) = (-40, 60, -90, 135). (iv) (m,n) = (-3,2), so m+n = -1 and $p = -5 = \frac{a}{n^3}$, and so $a = -5 \cdot (2)^3 = -40$. In this case, $r = -\frac{3}{2}$, and so we get the same quadruple as in (iii). (v) (m, n) = (2, 3), so m + n = 5 and p = 1, and so $a = 1 \cdot 3^3 = 27$. In this case, $r = \frac{2}{3}$, and so we get (a, b, c, d) = (27, 18, 12, 8). (vi) (m, n) = (-2, -3) gives the same quadruple as in (v). (vii) (m, n) = (-2, 3), so m + n = 1 and p = 5, and so $a = 5 \cdot 3^3 = 135$. In this case, $r = \frac{m}{n} = -\frac{2}{3}$, and so we get (a, b, c, d) = (135, -90, 60, -40). (viii) (m, n) = (2, -3) gives the same quadruple as in (vii). Case 3: $m^2 + n^2 = 5$ When $m^2 + n^2 = 5$, the integer solutions are $(m, n) = (\pm 2, \pm 1)$ and $(\pm 1, \pm 2)$. Since $m^2 + n^2 > m + n$, then m + n = 1 and p = 13, or m + n = -1 and p = -13. This gives the following 4 possibilities: (i) (m,n) = (2,-1), so m+n = 1 and $p = 13 = \frac{a}{n^3}$, and so $a = 13 \cdot (-1)^3 = -13$. In this case, r = -2, and so we get (a, b, c, d) = (-13, 26, -52, 104). (ii) (m, n) = (-2, 1) gives the same quadruple as in (i).

- (iii) (m, n) = (-1, 2), so m + n = 1 and p = 13, and so $a = 13 \cdot 2^3 = 104$. In this case, $r = -\frac{1}{2}$, and so we get (a, b, c, d) = (104, -52, 26, -13).
- (iv) (m, n) = (1, -2) gives the same quadruple as in (iii).

The quadruples of integers (a, b, c, d) so that a, b, c, d is a geometric sequence and a+b+c+d = 65 are: (8, 12, 18, 27), (27, 18, 12, 8), (-40, 60, -90, 135), (135, -90, 60, -40), (-13, 26, -52, 104), and (104, -52, 26, -13). We can verify that each of these quadruples is a geometric sequence with a sum of 65.