
2024 Canadian Computing Olympiad

Day 1, Problem 1

Treasure Hunt

Time Limit: 4 seconds

Problem Description

Perry the Pirate is sailing the seven seas! He has a map consisting of N islands connected
by a network of M sea routes. The i-th sea route connects islands ai and bi and costs ci
coins to traverse in either direction. As it turns out, fighting off sea monsters can be quite
expensive. In search of his next big plunder, Perry has scouted out each of the N islands
and has determined that the i-th island contains a treasure chest with vi coins inside.

It remains for him to plan out his next journey. He decides that he will sail through some
(possibly empty) path of sea routes starting at island x and ending at island y. At the end
of his journey, he will open the chest at island y and collect his well-earned booty.

There is one small problem though: Perry doesn’t know what island he’s currently on! Thus,
for every possible starting island x, he would like to know the maximum possible number
of coins he can earn out of all journeys starting at island x. Can you help him compute
these values? You may assume Perry has enough coins to traverse any path of sea routes he
chooses; he only cares about the net profit of his next journey.

Input Specification

The first line of input contains two space-separated integers N and M .

The second line of input contains N space-separated integers v1, v2, . . . , vN (0 ≤ vi ≤ 109).

The next M lines each contain three space-separated integers ai, bi (1 ≤ ai, bi ≤ N), and
ci (0 ≤ ci ≤ 109).

It is guaranteed that there is at most one sea route between any pair of islands and each sea
route connects two distinct islands.

Marks Awarded Bounds on N Bounds on M Additional constraints

5 marks 1 ≤ N ≤ 3 000 0 ≤ M ≤ 3 000 None
5 marks 1 ≤ N ≤ 106 0 ≤ M ≤ 106 For all i, either ci = 0 or ci = 109

7 marks 1 ≤ N ≤ 106 0 ≤ M ≤ 106
Exactly one path of sea routes
between any pair of islands

8 marks 1 ≤ N ≤ 106 0 ≤ M ≤ 106 None



Output Specification

Output N lines, where the x-th line contains the maximum possible net profit (in coins) of
any journey starting at island x.

Sample Input

4 5

6 5 9 2

1 2 0

3 2 3

4 3 6

1 3 5

2 4 2

Output for Sample Input

6

6

9

4

Explanation of Output for Sample Input

1

6

2

5

3

9

4

2

2

6

0

5
3

For the first and third islands, it is best to just stay and open the chest on the island itself.

For the second island, Perry can travel to the first island and open the chest there. This has
a net profit of 6− 0 = 6 coins and is the best possible net profit.

For the fourth island, Perry can to travel to the second and then the third island and open
the chest there. This has a net profit of 9 − 2 − 3 = 4 coins and is the best possible net
profit.



2024 Canadian Computing Olympiad

Day 1, Problem 2

Pizza Party

Time Limit: 4 seconds

Problem Description

Troy is fleshing out the details of his latest initiative, HackCCO! Everyone knows that the
biggest appeal of any hackathon is the free food. As such, to ensure the unparalleled success
of HackCCO, Troy ordered a comically large cart stacked with N pizzas where the i-th pizza
from the top of the cart has flavour ai.

After the pizza cart arrives, Troy needs to arrange them into some number of stacks on a
long table. To do this, he takes the pizzas one-by-one from the top of the cart and moves
them onto the table, each time either placing the pizza on top of another stack of pizzas or
forming a new stack on the table.

The N hungry HackCCO participants are lined up to get pizza from the table, one-by-one.
Troy knows that the i-th person in line has a favourite pizza flavour of bi. When the i-th
person walks up to the table, if they see any pizzas of their favourite flavour at the top of
any stack they will take any one of them at random. Otherwise, they won’t take anything
and will leave the table hungry.

Of course, hungry coders are not happy coders, so Troy doesn’t want anyone to leave the
table hungry. Thus, he asks you to help him find an arrangement of pizzas on the table such
that it is possible for nobody to leave hungry. Furthermore, out of all such arrangements,
Troy wants you to find one that creates the smallest number of stacks on the table (after
all, tables can only get so long). Help him find such an arrangement or determine that it’s
impossible!

Input Specification

The first line of input contains a single integer N .

The second line of input contains N space-separated integers a1, . . . , aN (1 ≤ ai ≤ N).

The third line of input contains N space-separated integers b1, . . . , bN (1 ≤ bi ≤ N).

Marks Awarded Bounds on N Additional constraints

3 marks 1 ≤ N ≤ 106 1 ≤ ai, bi ≤ 2
4 marks 1 ≤ N ≤ 5 000 All ai are distinct
5 marks 1 ≤ N ≤ 106 All ai are distinct
6 marks 1 ≤ N ≤ 5 000 None
7 marks 1 ≤ N ≤ 106 None



[Post-CCO edit: Subtasks 4 and 5 may not be solvable efficiently. CCO competitors were
judged only on subtasks 1-3.]

Output Specification

If it is impossible to arrange the pizzas as desired, output -1.

Otherwise, your output should consist of three lines. On the first line outputK, the minimum
number of stacks required. On the second line output N space-separated integers c1, . . . , cN
(1 ≤ ci ≤ K), indicating that the i-th pizza should be placed on stack ci. On the third line
output N space-separated integers d1, . . . , dN (1 ≤ di ≤ K), indicating that the i-th person
in line takes their pizza from the di-th stack. This stack must have a pizza of flavour bi at
the top when the i-th participant walks up to get their pizza.

Sample Input 1

7

1 2 3 2 2 1 3

2 3 1 2 3 2 1

Output for Sample Input 1

2

1 2 1 2 1 2 2

1 2 2 2 1 2 1

Explanation of Output for Sample Input 1

An illustration of the arrangement of pizzas on the table is shown above where red, yellow,
and blue boxes represent pizzas of flavours 1, 2, and 3 respectively.

Sample Input 2

2

1 2

1 1

Output for Sample Input 2

-1



2024 Canadian Computing Olympiad

Day 1, Problem 3

Summer Driving

Time Limit: 6 seconds

Problem Description

In Ontario, there are N cities numbered from 1 to N . There are N −1 roads numbered from
1 to N − 1, where the i-th road connects city ui and city vi. It is possible to travel from any
city to any other city using these roads.

Alice and Bob are travelling together, starting at city R. To make their driving experience
more interesting, they devise the following game.

Alice and Bob will alternate turns, starting with Alice. On Alice’s turn, she must drive
along exactly A distinct roads that they have never traversed before in either direction. On
Bob’s turn, he must drive along up to B distinct roads (possibly zero), but some of these
roads may have been traversed before.

Eventually, it will be Alice’s turn, but it will be impossible for her to drive along exactly A

distinct roads that they have never used before. When this happens, the game enters a final
phase before Alice does any more driving. In this final phase, Bob drives along up to B

distinct roads (possibly zero) that they have never traversed before in either direction.

Alice wants to end up in a city with as large a number as possible, while Bob wants to end
up in a city with a small number. What is the city that Alice and Bob end their journey in
when they both play optimally?

Input Specification

The first line of input contains four space-separated integers, N , R, A, and B (1 ≤ R,A,B ≤

N).

The next N − 1 lines of input each contain two space-separated integers ui and vi (1 ≤

ui, vi ≤ N, ui ̸= vi), describing a road.

Marks Awarded Bounds on N Additional Constraints

1 mark 2 ≤ N ≤ 300 000 A ≤ B

4 marks 2 ≤ N ≤ 300 000 There are at most two roads connected to any
city, and at most one road connected to city R.

5 marks 2 ≤ N ≤ 300 No additional constraints.
3 marks 2 ≤ N ≤ 3 000 No additional constraints.
4 marks 2 ≤ N ≤ 100 000 B ≤ 10
6 marks 2 ≤ N ≤ 100 000 No additional constraints.
2 marks 2 ≤ N ≤ 300 000 No additional constraints.



Output Specification

Output the city that Alice and Bob end their journey in, assuming they both play optimally.

Sample Input 1

9 6 2 1

1 3

1 6

2 4

2 5

2 7

3 9

4 6

4 8

Output for Sample Input 1

2

Explanation of Output for Sample Input 1

On Alice’s first turn, she has three options: Drive to city 2, 3, or 8.

If Alice drives to city 2, Bob can choose not to drive on any roads in his turn. Then, it will
be impossible for Alice to drive along 2 distinct roads that were never traversed before, so
the game enters the final phase. Bob can choose not to drive on any roads during this final
phase, ending in city 2.

If Alice drives to city 3, Bob can choose to drive 1 road to city 1. Then, it will be impossible
for Alice to drive along 2 distinct roads that were never traversed before, so the game enters
the final phase. Bob’s only option is to not drive on any roads during this final phase, ending
in city 1.

If Alice drives to city 8, Bob can choose to drive 1 road to city 4. Then, Alice can drive to
either city 5 or 7. In both cases, Bob can then drive 1 road to city 2. Alice can no longer
drive along 2 distinct roads that were never traversed before, so the game enters the final
phase. Bob can choose not to drive on any roads during this final phase, ending in city 2.

In all cases, Bob can force the game to end in city 1 or 2. Bob cannot force the game to end
in city 1, so under optimal play, the game ends in city 2.

Sample Input 2

7 2 3 2

2 7

7 3

3 1

1 4



4 5

5 6

Output for Sample Input 2

3



2024 Canadian Computing Olympiad

Day 2, Problem 1

Infiltration

Time Limit: 1 second

Problem Description

Ondrej and Edward are spies and they are going to take down the evil organization AQT.
To do so, they will need to infiltrate into the AQT base. The base can be modelled as a tree
with N = 100 rooms, labelled from 0 to N − 1. Ondrej and Edward’s plan to infiltrate the
base is to first get kidnapped and then meet up together before executing their plan. When
kidnapped, the two will be placed into different rooms unknown to each other. Once they
are placed into the rooms, they will both break free at midnight and try to meet up with
each other before executing their plan.

Their plan to meet up is as follows. At every odd minute, Ondrej can choose to stay at his
current room or move to an adjacent room. At every even minute, Edward can choose to
stay at his current room or move to an adjacent room.

A strategy is defined as the following. Let V (A,R, T ) denote the room agent A should be at
assuming that they were at room R at midnight and it is currently T minutes after midnight.
The strategy should match the conditions above. The agents are said to meet up at time
t(o, e), which is the first time where V (Ondrej, o, t(o, e)) = V (Edward, e, t(o, e)).

Ondrej and Edward want to meet up as fast as possible, relative to the distance between
their two starting rooms. The distance d(o, e) is the minimum number of corridors that must
be traversed to reach o from e. Please help find a strategy that minimizes the maximum
t(o,e)
d(o,e)

across all pairs of different rooms o and e.

Input Specification

The first line of input will contain N (N = 100). [Post-CCO edit: If the value of N is
anything other than 100, exit the program immediately.]

The next N − 1 lines will each contain two space-separated integers, denoting the labels of
two rooms with a bidirectional corridor between them.

Output Specification

First output a positive number T , the number of entries per starting room. Note that
T ≤ 1440 must be satisfied, otherwise you will be awarded no points.

Then, output Ondrej’s strategy, followed by Edward’s strategy.

To output an agent’s strategy, outputN lines, where the n-th line (starting from 0) represents
the agent’s path if they start at room n. For each line, output T spaced integers: The room



label that the agent should be in at time 1, 2, . . . , T .

Scoring

If the output is invalid or there exists a test case and a pair of different rooms o and e where
the agents do not meet at or before time T , then no points will be awarded.

Otherwise, let S be the maximum among all test cases and pairs of o and e (o ̸= e) of the

value of t(o,e)
d(o,e)

. The following table shows how the available 25 marks are distributed:

Score Bounds on S

3 200 < S ≤ 1440

6 100 < S ≤ 200

8 50 < S ≤ 100

10 40 < S ≤ 50

12 30 < S ≤ 40

15 25 < S ≤ 30

17 20 < S ≤ 25

18 19 < S ≤ 20

19 18 < S ≤ 19

20 17 < S ≤ 18

21 16 < S ≤ 17

22 15 < S ≤ 16

25 S ≤ 15

Sample Input 1

5

0 2

3 2

1 4

2 4

Output for Sample Input 1

8

2 2 4 4 1 1 1 1

1 1 1 1 1 1 1 1

3 3 2 2 3 3 2 2

3 3 2 2 0 0 2 2

4 4 4 4 2 2 2 2

0 2 2 3 3 3 3 2



1 4 4 2 2 0 0 0

2 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

4 1 1 1 1 4 4 4

Explanation of Output for Sample Input 1

Note that this is an invalid test case as N ̸= 100, so it will not appear in the test cases when
judging. The output for the test case is valid. Note that this would not score any points
because if Ondrej starts at room 1 and Edward starts at room 3, then they will never meet
each other.



2024 Canadian Computing Olympiad

Day 2, Problem 2

Heavy Light Decomposition

Time Limit: 4 seconds

Problem Description

In an array containing only positive integers, we say an integer is heavy if it appears more
than once in the array, and light otherwise.

An array is good if the integers in the array alternate between light and heavy.

Given an array a1, . . . , aN , count the number of ways to partition it into some number of
contiguous subarrays such that each subarray, when considered as an array on its own, is
good. As the answer may be large, output it modulo 1 000 003.

Input Specification

The first line of input contains a single integer, N .

The next line contains N integers a1, . . . , aN(1 ≤ ai ≤ N).

Marks Awarded Bounds on N Additional Constraints

3 marks 2 ≤ N ≤ 50 000 For each i, ai ≤ 26.
4 marks 2 ≤ N ≤ 5 000 No additional constraints.
5 marks 2 ≤ N ≤ 500 000 If i is odd, then ai = 1.
6 marks 2 ≤ N ≤ 500 000 Any number appears at most

twice in the array.
7 marks 2 ≤ N ≤ 500 000 No additional constraints.

Output Specification

The number of ways to partition the array into good contiguous subarrays, modulo 1 000 003.

Sample Input 1

5

1 2 3 2 3

Output for Sample Input 1

4

Explanation of Output for Sample Input 1

There are four valid partitions of [1, 2, 3, 2, 3]:



• [1], [2], [3], [2], [3]

• [1], [2, 3, 2], [3]

• [1], [2], [3, 2, 3]

• [1, 2, 3, 2], [3]

Sample Input 2

5

1 2 1 3 1

Output for Sample Input 2

6



2024 Canadian Computing Olympiad

Day 2, Problem 3

Telephone Plans

Time Limit: 4 seconds

Problem Description

The “Dormi’s Fone Service” is now the only telephone service provider in CCOland. There
are N houses in CCOland, numbered from 1 to N . Each telephone line connects two distinct
houses such that all the telephone lines that ever exist form a forest.

There is an issue where the phone lines are faulty, and each phone line only exists for a single
interval of time. Two houses can call each other at a certain time if there is a path of phone
lines that starts at one of the houses and ends in the other house at that time.

We would like to process Q queries of the following forms:

• 1 x y: Add a phone line between houses x and y. It is guaranteed that a phone line
between houses x and y was never added before.

• 2 x y: Remove the phone line between houses x and y. It is guaranteed that a phone
line currently exists between houses x and y.

• 3 t: Compute the number of pairs of different houses that can call each other at some
time between the current query and t queries ago. To be more clear, let Gq be the
state of CCOland after the q-th query, where G0 is the state of CCOland before any
queries. If this is the s-th query, then count the number of pairs of houses that are
connected in at least one of Gs−t, Gs−t+1, . . . , Gs.

Also, some test cases may be encrypted. For the test cases that are encrypted, the arguments
x, y, or t are given as the bitwise xor of the true argument and the answer to the last query
of type 3 (if there have been no queries of type 3, then the arguments are unchanged).

Input Specification

The first line of input will contain E (E ∈ {0, 1}). E = 0 denotes that the input is not
encrypted, while E = 1 denotes that the input is encrypted.

The second line contains two space-separated integers N and Q, representing the number of
houses in CCOland and the number of queries, respectively.

The next Q lines contain queries as specified above (queries are encrypted or not depending
on E).

For the q-th query (1 ≤ q ≤ N), it is guaranteed that (after decrypting if E = 1) 1 ≤ x, y ≤ N

for type 1 and 2 queries and 0 ≤ t ≤ q for type 3 queries.



Marks Awarded Bounds on N Bounds on Q Encrypted?

3 marks 1 ≤ N ≤ 30 1 ≤ Q ≤ 150 E = 0

2 marks 1 ≤ N ≤ 30 1 ≤ Q ≤ 150 E = 1

4 marks 1 ≤ N ≤ 2 000 1 ≤ Q ≤ 6 000 E = 0

2 marks 1 ≤ N ≤ 2 000 1 ≤ Q ≤ 6 000 E = 1

4 marks 1 ≤ N ≤ 100 000 1 ≤ Q ≤ 300 000 E = 0

5 marks 1 ≤ N ≤ 100 000 1 ≤ Q ≤ 300 000 E = 1

5 marks 1 ≤ N ≤ 500 000 1 ≤ Q ≤ 1 500 000 E = 1

Output Specification

For each query of type 3, output the answer to the query on a new line.

Sample Input 1

0

4 12

3 0

1 1 2

3 0

1 1 3

3 0

3 5

2 2 1

3 0

3 8

1 1 4

3 0

3 11

Output for Sample Input 1

0

1

3

3

1

3

3

5

Explanation of Output for Sample Input 1

This test case is not encrypted.



For the 1st query, no pairs of different houses could have called each other.

For the 3rd query, only houses 1 and 2 could have called each other.

For the 5th query, {(1, 2), (1, 3), (2, 3)} is the set of pairs that could have called each other.
The 6th query is the same.

For the 8th query, only houses 1 and 3 could have called each other.

For the 9th query, there is a point in time where {(1, 2), (1, 3), (2, 3)} could have called each
other.

For the 11th query, the set of pairs that could have called each other is {(1, 3), (1, 4), (3, 4)}.

For the 12th query, the set of pairs that could have called each other at any previous time
is {(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)}.

Sample Input 2

1

4 12

3 0

1 1 2

3 0

1 0 2

3 1

3 6

2 1 2

3 3

3 9

1 2 7

3 3

3 8

Output for Sample Input 2

0

1

3

3

1

3

3

5

Explanation of Output for Sample Input 2

Encrypted version of sample 1.


