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Trigonometry
Toolkit
Name Formula
Sine L - b ©_ — 2R, where R is the radi
in = = = re R i radi
¢ Law sinA sinB sinC ) WHERE 15 BHE Tadius
of the circumcircle.
Cosine Law a? = b? + c? — 2bccos A
b = a?® + ¢ — 2accos B
2 =b*+a?—2abcosC
. . N 1, . r .
Area relations The area of triangle ABC' is §ab sinC' = §bc sin A = acsin B.
.. 1
General Identities cotf = ,  secl = ,  cscl = —
an 6 cosf sin
tanf = i , cotf = C,Ose
cos 6 sin
sin(—f0) = —sinf, cos(—0) = cosf, tan(—0) = —tand
Pythagorean Identities | sin®f +cos?6 =1, tan?f + 1 =sec?f, cot?f+ 1 = csc?d
Sum Formulas sin(A + B) = sin A cos B + cos Asin B
cos(A+ B) = cos Acos B — sin Asin B
Double Angle Formulas | sin(20) = 2sin cos 6
cos(20) = cos® — sin® = 2cos’f — 1 =1 — 2sin 0
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Sample Problems

1. Determine the values of  such that 2sin® 2z — 5sin® 2 + 2sinz = 0 given that 0 < z < 2.
Solution

We factor the given equation to obtain

sinz(2sin’x — 5sinz +2) = 0

sinz(2sinz — 1)(sinx —2) =0

1
So sinz = 0, 5 or 2. But |sinz| < 1. So sinz # 2. Therefore, in the interval 0 < z < 27, we
)
have x =0, m, 27, % or —W.

6

2. An airplane leaves an aircraft carrier and flies due south at 400 km/hr. The carrier proceeds
at a heading of 60° west of north at 32 km/hr. If the plane has 5 hours of fuel, what is the
maximum distance south the plane can travel so that the fuel remaining will allow a safe return
to the carrier at 400 km/hr?

Solution

The first step in solving this problem is to draw a diagram (as shown). If we let = be the
number of hours that the plane flies south, then the distance that the plane flies south is 400z.
The plane then flies a distance 400(5 — ) in the remaining time, while the total distance the
carrier travels is 5(32) = 160. Using these distances, the cosine law gives us

(400(5 — z))* = 160* + (400x)* — 2 - 160 - 400z - cos 120°.

160

4005- 9\ | 400x

Simplifying we obtain
4000000 — 1600000z + 16000022 = 25600 + 1600002 + 640002

621
which we can solve to get z = 260" Thus, the maximum distance the plane should travel south

621 12420
is 400 (260) =3 km, which is approximately 955.4 km.
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AB AC

3. In triangle ABC, the point D is on BC' such that AD bisects ZA. Show that DD

Solution
We call ZADC = 6 and ZBAC = «. We use the sine law in triangles ADC and ADB to
a a

sin — D sin
2 ¢ 2 _BD : : o AB AC
= . B = 1
snd — AC and Sn(180- —0) ~ AB ut sin f = sin(180° — #) and so =

BD CD’
This result is known as the angle bisector theorem.

obtain

4. For the given triangle ABC, ZC = ZA+60°. If BC =1, AC =r and AB = r?, where r > 1,
prove that r < v/2.

Solution

We represent the angles of the triangle as: ZA = a, ZC' = a+ 60°, and /B = 120° — 2a. So
the sine law states

r? _ sin(a +60°)

1 sin «
sin av cos 60° + cos ¢ sin 60°

sin o

+ cot «

| %

N | —

Since all three angles in the triangle are positive, we can see that 0 < a < 60° . In this range,
the tangent function is increasing, and its reciprocal, the cotangent function, is decreasing.

The cosine law gives
r? =1+ 7" — 2r? cos(120° — 2a).
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But r > 1 and so
(r*—1)*>>0o0r r* +1> 207

Substituting the second inequality into the equation gives 72 > 2r? — 2r? cos(120° — 2«) which
1
implies cos(120° — 2a) > 3 Thus, o > 30° and

=2

1 V3 1 V3 V3
2—_ E— — —_— ———
re = +2(:ota<2+2 1

\)

Thus, 72 < 2 and so r < /2.
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Problem Set

1. (a) If 2sin(20) + 1 = 0, find the smallest positive value of 6 (in degrees).
(b) For —7 < # <, find all solutions to the equation 2(sin? @ — cos? #) = 8sin ) — 5.

2. In AABC, M is a point on BC such that BM =5 and MC = 6. If AM =3 and AB =7,
determine the exact value of AC.

B 5 M 6 C

3. In determining the height, M N, of a tower on an island, two points A and B, 100 m apart, are
chosen on the same horizontal plane as N. If /NAB = 108°, ZABN = 47° and /M BN = 32°,
determine the height of the tower to the nearest metre.

M

100 m

4. A rectangle PQRS has side P on the z-axis and touches the graph of y = kcosx at the
5
points S and R as shown. If the length of PQ) is g and the area of the rectangle is ?ﬂ, what

is the value of k7

/N

R
2
/PO Q\

X
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3
5. The graph of the equation y = asin kx is shown in the diagram, and the point (%,—2 is

the minimum point indicated. The line y = 1 intersects the graph at point D. What are the
coordinates of D?

6. A square with an area of 9 cm? is surrounded by four congruent triangles, forming a larger

square with an area of 89 cm?. If each of the triangles has an angle  as shown, find the value
of tan@.

7. A rectangular box has a square base of length 1 cm, and height v/3 cm as shown in the diagram.
What is the cosine of angle FAC?

F G
F
H
NG D c
1
A T B

8. In the grid, each small equilateral triangle has side length 1. If the vertices of AW AT are
themselves vertices of small equilateral triangles, what is the area of AW AT?
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9. In AABC, AB = 8, and ZCAB = 60°. Sides BC' and AC have integer lengths a and b,
respectively. Find all possible values of a and b.



