

Grade 11/12 Math Circles Dynamical Systems and Fractals - Solutions

Exercise Solutions

Exercise 1

Find all of the fixed points of the function $f(x) = x^2 - 2$.

Exercise 1 Solution

Set $f(\bar{x}) = \bar{x}$ and solve.

$$\rightarrow \bar{x}^2 - 2 = \bar{x}$$
$$\bar{x}^2 - \bar{x} - 2 = 0$$
$$(\bar{x} + 1)(\bar{x} - 2) = 0$$

This has two solutions: $\bar{x}_1 = -1$ and $\bar{x}_2 = 2$, both of which must be fixed points of $f(x) = x^2 - 2$.

Let's check! $f(-1) = (-1)^2 - 2 = 1 - 2 = -1$ $f(2) = 2^2 - 2 = 4 - 2 = 2$

Exercise 2

Given that $f(x) = \frac{1}{x}$, find the periodic points of period two of f(x).

Hint: You may want to find the fixed points of f(x) first.

Exercise 2 Solution

First, find the fixed points of f(x) by solving $f(\bar{x}) = \bar{x}$.

$$\frac{1}{\bar{x}} = \bar{x}$$
$$\bar{x}^2 = 1$$

This has solutions $\bar{x}_1 = -1$ and $\bar{x}_2 = 1$. so these must be our fixed points.

Now we want to solve for the fixed points of $f^{[2]}(x)$.

$$f^{[2]}(x) = f(f(x))$$
$$= \frac{1}{1/x}$$
$$= x$$

Setting $f^{[2]}(\bar{x}) = \bar{x}$ gives $\bar{x} = \bar{x}$. This is true for all values of \bar{x} . Does this mean that all values of \bar{x} are periodic points of period two of f(x)? Almost!

Since the points $\bar{x}_1 = -1$ and $\bar{x}_2 = 1$ are fixed points of f(x), they cannot also be periodic points of period two. We also need to be careful and consider the domain of f(x), which excludes the point x = 0 (since $f(x) = \frac{1}{x}$ is undefined when x = 0). This means that x = 0cannot be a periodic point of f(x). What we are left with is that all $x \in \mathbb{R}$ except for x = -1, 1, and 0 are periodic points of period two of f(x). We could write the set of periodic points of period two of f(x) as $\{x \in \mathbb{R} | x \neq -1, 1, 0\}$.

Problem Set Solutions

1. Consider the function $f(x) = x^2$. Sketch this function and plot the first few points of its orbit $\{x_0, x_1, x_2, x_3, \ldots\}$, i.e. plot the points $(x_0, x_1 = f(x_0))$, $(x_1, x_2 = f(x_1))$, etc..., for the starting values $x_0 = 0, 1/2$, and 2. Describe what is happening to the orbit of f(x) for each of these starting values.

Solution:

 $x_0 = 0$:

The orbit of $x_0 = 0$ under $f(x) = x^2$ is: $\{0, 0, 0, 0, \dots\}$. The point $x_0 = 0$ is a fixed point of f(x).

zero.

are getting larger in magnitude on each iteration and approaching infinity.

2. Let $f(x) = x^2 + 3x + 1$. Find all of the fixed points of f(x).

Solution: To find the fixed points we need to solve $f(\bar{x}) = \bar{x}$. $\bar{x}^2 + 3\bar{x} + 1 = \bar{x}$ $\bar{x}^2 + 2\bar{x} + 1 = 0$ $(\bar{x} + 1)^2 = 0$

This has one solution, $\bar{x} = -1$, so f(x) has just one fixed point at $\bar{x} = -1$.

3. Consider the family of functions defined by $f_c(x) = cx$ where c is a constant and $c \neq 0$. Determine all of the fixed points of $f_c(x)$.

Hint: You may end up with different fixed points depending on the value of c.

Solution: To find the fixed points of $f_c(x)$ we solve $f_c(\bar{x}) = \bar{x}$, treating c as a constant.

$$c\bar{x} = \bar{x}$$
$$(c-1)\bar{x} = 0$$

For most values of c, this has one solution, $\bar{x} = 0$, however we can see that when c = 1, then all $\bar{x} \in \mathbb{R}$ are solutions. Thus, the fixed points of $f_c(x)$ are $\bar{x} = 0$, $c \neq 1$ and $\bar{x} \in \mathbb{R}$, c = 1. Notice that when c = 1, $f_1(x) = x$, for which all $x \in \mathbb{R}$ are clearly fixed points.

- 4. (a) Consider the function $f(x) = x^2 \frac{1}{2}$. Sketch f(x) and y = x on the same set of axes and show graphically that f(x) has two fixed points. Label these fixed points on your sketch as \bar{x}_1 and \bar{x}_2 such that $\bar{x}_1 < \bar{x}_2$.
 - (b) Use a graphical method (i.e. cobweb diagram) to help determine the behaviour of various orbits starting near both \bar{x}_1 and \bar{x}_2 . Use your diagram to make an educated guess as to the nature (attractive, repelling, or neither) of each fixed point.
 - (c) Now consider the family of functions $f_c(x) = x^2 + c$ where c is a constant. For what values of c do fixed points of $f_c(x)$ exist? Some sketches of the graphs of $f_c(x)$ for various values of c may help, but they are not necessary.

Solution:

(a) From the graph, we can see that f(x) intersects the line y = x twice, and thus has two fixed points.

From our cobweb diagram we see that the iterates of f(x) are attracted towards the fixed point \bar{x}_1 , so we can guess that this is an attractive fixed point. On the other hand, the iterates of f(x) move away from the fixed point \bar{x}_2 , so this is likely to be a repelling fixed point.

(c) To find the fixed points of $f_c(x)$ we need to solve $f_c(\bar{x}) = \bar{x}$.

$$\bar{x}^2 + c = \bar{x}$$
$$\bar{x}^2 - \bar{x} + c = 0$$

Using the quadratic formula, this has solutions $\bar{x} = \frac{1}{2} \pm \frac{1}{2}\sqrt{1-4c}$. This has (real) solutions only when the argument of the square root is greater than (or equal to) zero, i.e.

$$1 - 4c \ge 0$$
$$c \le \frac{1}{4}$$

Thus, $f_c(x)$ has fixed points when $c \leq \frac{1}{4}$. Notice that when $c = \frac{1}{4}$, $f_c(x)$ has one fixed point (only one solution to the quadratic formula) and when $c < \frac{1}{4}$, $f_c(x)$ has two fixed points (two solutions to the quadratic formula).

5. Let $f(x) = -x^3$. Find all fixed points and periodic points of period two of f(x).

Solution: First, let's find any fixed points by solving $f(\bar{x}) = \bar{x}$.

$$-\bar{x}^3 = \bar{x}$$
$$\bar{x} + \bar{x}^3 = 0$$
$$\bar{x}(1 + \bar{x}^2) = 0$$

This has just one solution, $\bar{x} = 0$, so f(x) has one fixed point at $\bar{x} = 0$.

Now, let's find any periodic points of period two. We need to solve $f^{[2]}(\bar{x}) = \bar{x}$.

$$f^{[2]}(x) = f(f(x)) = -(-x^3)^3 = x^9$$

So we need to solve $\bar{x}^9 = \bar{x}$. Rearranging, this gives $\bar{x}(\bar{x}^8 - 1) = 0$, which has three solutions $\bar{x} = 0, -1$, and 1. Since $\bar{x} = 0$ is a fixed point, the remaining two points must form a two cycle. Thus, $\bar{x} = -1$ and 1 are the points of period two of f(x).

6. CHALLENGE Let $f(x) = 1 - x^2$. Find all fixed points and periodic points of period two of f(x).

Solution: First, let's find the fixed points.

$$1 - \bar{x}^2 = \bar{x}$$
$$\bar{x}^2 + \bar{x} - 1 = 0$$

Using the quadratic formula, this gives two solutions, $\bar{x} = \frac{-1}{2} \pm \frac{\sqrt{5}}{2}$, which are the two fixed points of f(x).

Next, we want to solve for any periodic points of period two. First we find $f^{[2]}(x)$,

$$f^{[2]}(x) = 1 - (1 - x^2)^2$$

= 1 - 1 + 2x^2 - x^4
= 2x^2 - x^4

and then solve $f^{[2]}(\bar{x}) = \bar{x}$.

$$2\bar{x}^2 - \bar{x}^4 = \bar{x}$$
$$\bar{x}^4 - 2\bar{x}^2 + \bar{x} = 0$$
$$\bar{x}\left(\bar{x}^3 - 2\bar{x} + 1\right) = 0$$

Factoring the cubic part of this expression could be difficult, but luckily we know that the fixed points of f(x) are also solutions to $f^{[2]}(\bar{x}) = \bar{x}$. This means that $(\bar{x}^2 + \bar{x} - 1)$ must be a factor. Thus we have

$$\bar{x}\left(\bar{x}^2 + \bar{x} - 1\right)\left(\bar{x} - 1\right) = 0$$

The two new solutions (which are not fixed points of the original function) are $\bar{x} = 0$ and 1. Thus we must have the two cycle $\{0, 1\}$.

7. CHALLENGE Consider the function $f(x) = x + \cos(x)$. Show that f(x) has an infinite number of fixed points.

Solution: To find the fixed points of f(x) we must solve

$$\bar{x} + \cos\left(\bar{x}\right) = \bar{x}$$
$$\cos\left(\bar{x}\right) = 0.$$

Considering the unit circle (or a graph of $\cos(x)$), we see that this is true when \bar{x} is an odd multiple of 90 degrees, i.e. $\bar{x} = 90^{\circ}, 270^{\circ}, 450^{\circ}, -90^{\circ}, \ldots$

We can write this as \bar{x} is a fixed point of f(x) when $\bar{x} = (2k + 1) \cdot 90^{\circ}$ for any integer k. Since the set of all integers is an infinite set, this results in an infinite number of fixed points for f(x).