
Grade 11/12 Math Circles

Dynamical Systems and Fractals

Discrete-Time Dynamical Systems

Put simply, a dynamical system is any system which changes over time. The study of dynamical

systems is an important part of applied mathematics and allows us to understand and predict the

long-term behaviour of many physical processes. When time is measured in discrete units (as opposed

to continuous units) then we have what is called a discrete-time dynamical system. As a simple ex-

ample, consider computing the compound interest on an investment (compound interest means that

the interest earned is based on the current value of the investment). If the interest is compounded

(added) annually, then it makes sense to define xn as the value of the investment in year n.

If we start with some initial amount of money, x0, after one year elapses the value of the invest-

ment will be

x1 = x0 + rx0 = (1 + r)x0,

where r is the interest rate. Similarly, after a second year elapses, the investment will be worth

x2 = x1 + rx1 = (1 + r)x1.

Are you starting to see a pattern? After n years, the investment is worth

xn = (1 + r)xn−1.

If we define a function, f(x) = (1 + r)x, then we can write a model for the value of the investment

after n years as xn = f(xn−1). The value of the investment in year n depends on the value from the

previous year, year n− 1, and this dependence is defined by the function f(x).

This was a fairly simple example. There are many processes, both natural and man-made, which

can be modelled as discrete-time dynamical systems. A few common examples include: population

growth of plants and animals measured annually, radioactive decay, and bacteria growth. In order

to study the dynamics of a system governed by the relation xn = f(xn−1), we must understand the

behaviour of the function f(x) when it is applied iteratively (multiple times) to some initial state.
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Iterations of Functions

Let’s consider a function f(x). We can think of functions as “machines” which map inputs to outputs.

If we want to model the long term behaviour of a discrete-time dynamical system defined by the

relation xn+1 = f(xn) then we will need to consider applying f(x) multiple times, or iterating f(x).

Given some initial state (initial input) x0, the iterates of x0 under the function f(x) are defined as

follows.

Definition (Iterates of f(x))

Let f(x) be a function such that x0 is in the domain of f(x). Then we can define the following:

• x1 = f(x0) = f [1](x0) is the first iterate of x0 under f(x).

• x2 = f(x1) = f(f(x0)) = f [2](x0) is the second iterate of x0 under f(x).

• xn = f(xn−1) = f(f(. . . f(x0) . . .)) = f [n](x0) is the nth iterate of x0 under f(x).

The collection of these iterates {x0, x1, x2, . . . , xn, . . .} is called the orbit of x0 under f(x).

The orbit of a function can look very different depending on the starting value that we choose. Let’s

look at some examples!
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Example 1

Consider the function f(x) = x2 with initial value x0 = 1/2.

The first iterate is x1 = f(x0) = f(1/2) = 1/4.

The second iterate is x2 = f(x1) = f(1/4) = 1/16.

The third iterate is x3 = f(x2) = f(1/16) = 1/256.

Continuing this process, the orbit of x0 = 1/2 under f(x) = x2 is
{

1
2
, 1
4
, 1
16
, 1
256

, 1
65536

. . .
}

.

We see that the iterates of f(x) continue to get smaller and smaller, eventually approaching

zero.

Example 2

Once again, let f(x) = x2, and this time consider the initial value x0 = 1.

The first iterate is x1 = f(x0) = f(1) = 1.

The second iterate is x2 = f(x1) = f(1) = 1.

The third iterate is x3 = f(x2) = f(1) = 1.

Continuing this process, the orbit of x0 = 1 under f(x) = x2 is {1, 1, 1, 1, 1 . . .}.

The value x = 1 is what is called a fixed point of f(x).

Example 3

Finally, let’s consider the initial value x0 = 2, again with f(x) = x2.

The first iterate is x1 = f(x0) = f(2) = 4.

The second iterate is x2 = f(x1) = f(4) = 16.

The third iterate is x3 = f(x2) = f(16) = 256.

Continuing this process, the orbit of x0 = 2 under f(x) = x2 is {2, 4, 16, 256, 65536 . . .} .

We see that the iterates of f(x) continue to get larger and larger, eventually approach-

ing infinity.
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Fixed Points

In the previous section, we saw that a specific input value, namely the value x0 = 1, caused the orbit

of the function f(x) = x2 to get “stuck” repeating a single value over and over. This type of a special

value is called a fixed point of the function f(x).

Definition (Fixed Point)

Let f(x) be a function and x̄ be in the domain of f(x). Then x̄ is a fixed point of f(x) if

f(x̄) = x̄.

A function may have multiple fixed points, one fixed point, or no fixed points at all. We can find the

fixed points of the function f(x) by solving the equation f(x̄) = x̄ for all possible solutions x̄ which

are in the domain of f(x).

Example 4

Let’s go back to the function f(x) = x2 from our previous examples. We know that this

function has at least one fixed point since f(1) = 1. Let’s find out if there are any others!

Set f(x̄) = x̄ and solve.

→ x̄2 = x̄

x̄2 − x̄ = 0

x̄(x̄− 1) = 0

This has two solutions: x̄1 = 0 and x̄2 = 1, both of which must be fixed points of f(x) = x2.

Let’s check!

f(0) = 02 = 0

f(1) = 12 = 1
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Now it’s your turn!

Exercise 1

Find all of the fixed points of the function f(x) = x2 − 2.

Finding the fixed points of f(x) is equivalent to finding the intersections of the function f(x) with

the line y = x. Let’s look once again at the function f(x) = x2 which we now know has two fixed

points at x̄1 = 0 and x̄2 = 1. These two fixed points correspond to the two intersections with the

line y = x seen in the figure below.

When studying the dynamics of a system governed by the function f(x), we are often interested in

how the iterates of f(x) behave near its fixed points. Are they attracted towards a fixed point? Do

they move away from the fixed point, never coming close to it? Or maybe they bounce around a fixed

point, but never touch it? Using a figure like the one shown above, we can use a graphical approach

to help determine the behaviour of some iterates of f(x).
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First, let’s choose a starting point near the fixed point x̄1 = 0. To find the first iterate we simply draw

a straight line up from x0 to the point (x0, f(x0)). To find the next iterate, we need to determine

where x1 lies on the x-axis, so we draw a line over to the line y = x which gives us the point (x1, x1).

Drawing a line straight down will intersect with the point x1 on the x-axis, and from here we can

find the point (x1, f(x1)). Continuing the process, we find x2, x3, and so on, as shown in the figure

below.

We can repeat this process using several starting values near the fixed point x̄1 = 0 which results in

the next figure. This is called a cobweb diagram.
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The cobweb diagram shown above indicates that iterates near the fixed point x̄1 = 0 tend to approach

0. We might say that the iterates are attracted to the fixed point x̄1 = 0.

What about the other fixed point x̄2 = 1? Using the same process, we can draw a cobweb diagram

for points near x̄2 = 1.

We see from our diagram that when we start near the fixed point x̄2 = 1 the iterates move away from

the fixed point. On the left hand side the iterates get smaller and smaller, once again approaching
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the fixed point x̄1 = 0, whereas on the right hand side, the iterates get larger and larger, moving

away from both fixed points. We say that the iterates are repelled away from x̄2 = 1.

Attractive and Repelling Fixed Points

In the previous section we saw an example of both an attractive and a repelling fixed point. Let’s

formalize what this means, starting with the definition of an attractive fixed point.

Definition (Attractive Fixed Point)

A fixed point x̄ is an attractive fixed point of f(x) if there exists an interval surrounding x̄,

say I = [a, b] with a < x̄ < b, such that for all x ∈ I, the iterates of f(x) approach x̄ in the

limit as n approaches infinity (f [n](x) → x̄). Put in simple terms, this means that as n gets

large, the iterates f [n](x) get arbitrarily close to x̄.

This could look something like this:

or like this:
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Example 5

Once again we look at f(x) = x2. We saw graphically that the fixed point at x = 0 is an

attractive fixed point. To show that this is true, let’s define the interval I = [−0.95, 0.95] which

clearly contains the point x = 0. Notice that all x ∈ I satisfy |x| < 1.

This means that if we choose any x0 ∈ I, |x1| = |f(x0)| < |x0| < 1.

Repeating this argument, we see that |x0| > |x1| > |x2| > |x3| > . . . > 0, i.e. the iter-

ates are decreasing in magnitude towards the fixed point x = 0.

Technically, a bit more work needs to be done to show that the sequence does in fact

converge to the fixed point x = 0, but that’s beyond the scope of this lesson.

Now, what about repelling fixed points?

Definition (Repelling Fixed Point)

A fixed point x̄ is a repelling fixed point of f(x) if there exists some interval around x̄, say

I = [a, b] with a < x̄ < b, such that for all x ∈ I, x 6= x̄, we have that |f(x)− x̄| > |x− x̄|. This

means that the function, f , maps the point x further away from the fixed point x̄.

Notice how the definition of a repelling fixed point only depends on the behaviour of the first

iteration of f , NOT the long term behaviour.
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Example 6

Let’s look at f(x) = x2 one last time. Our cobweb diagram indicated that the second fixed

point at x = 1 is a repelling fixed point. To show that this is true, let’s define the interval

I = [0.5, 1.5] which contains x = 1. For any x ∈ I, x 6= 1 we have

|f(x)− 1| = |x2 − 1|

= |x + 1||x− 1|

≥ 1.5|x− 1| (since x ∈ I)

> |x− 1|.

Therefore x = 1 is a repelling fixed point.

Periodic Points

Another interesting behaviour we might come across when studying the iteration dynamics of a

function are orbits which exhibit periodic behaviour, effectively jumping back and forth between a

finite number of values. Let’s look at an example!

Example 7

Consider the function f(x) = − 3
√
x and the initial value x0 = 1. We can see that f(1) = −1

and f(−1) = 1. Therefore the orbit of x0 = 1 under f(x) is {1,−1, 1,−1, 1,−1, . . .}. We say

that the pair of points {1,−1} is a two-cycle of f(x).

Definition (Periodic Points)

The point x0 is a periodic point of period n of f(x) if the following is true

• f [n](x0) = x0 (this means x0 is a fixed point of f [n](x)), and

• f [m](x0) 6= x0 for all m, 0 < m < n.

If x0 is a periodic point of period n, then the set {x0, x1, x2, . . . , xn−1} is called an n-cycle of

f(x).

We can use the first bullet point in the definition above in order to solve for the periodic points of
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period n of a function. Let’s take another look at the function f(x) = − 3
√
x.

Example 8

Let’s say that we want to find all of the two cycles of the function f(x) = − 3
√
x. This means we

need to find the fixed points of f [2](x). But what is f [2](x)?

f [2](x) = f(f(x))

= − 3
√

f(x)

= −
(
−x1/3

)1/3
(remember that 3

√
x = x1/3)

= x1/9

To find the fixed points we solve f [2](x̄) = x̄, i.e. x̄1/9 = x̄. This has solutions x̄ = −1, 0, and 1.

The point x̄ = 0 is a fixed point of the original function f(x) (we could also call it a periodic

point of period one) and the points {1,−1} form a two-cycle, as we saw previously.

Now it’s your turn!

Exercise 2

Given that f(x) = 1
x
, find the periodic points of period two of f(x).

Hint: You may want to find the fixed points of f(x) first.
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