
Grade 11/12 Math Circles

Dynamical Systems and Fractals - Solutions

Exercise Solutions

Exercise 1

Consider the following generator, G.

`

G 1
3
` 1

3
`

which acts by removing the middle third of line segments. Repeated application of G results in

the following fractal set, referred to as the Cantor set.

E0
E1
E2

...

Ek

Determine an appropriate value of r and use the scaling relation to find the fractal dimension,

D, of the Cantor set.

Letting r = 1
3

we see that if it takes N(ε) measuring sticks of length ε (or ε-tiles if you prefer)

to cover the Cantor set, then it will take N
(
1
3
ε
)

= 2N(ε) measuring sticks of length 1
3
ε to cover

the Cantor set.

Putting this into the scaling relation we get

N

(
1

3
ε

)
= 2N(ε) = N(ε)

(
1

3

)−D
.

Solving for D yields D = log(2)
log(3)

≈ 0.63. The Cantor set is somewhere between zero-dimensional

and one-dimensional.
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Exercise 2

Consider the linear function f(x) = ax + b. Show that when 0 < a < 1, f(x) is a contraction

mapping on the domain [0, 1]. Determine the contraction factor of f .

To show that f is a contraction mapping, consider x and y ∈ [0, 1]. We see that

|f(x)− f(y)| = |ax+ b− (ay + b)|

= |ax− ay + b− b|

= |ax− ay|

= a|x− y|

≤ a|x− y|.

Since 0 < a < 1, f is a contraction mapping. The contraction factor of f is a.

Problem Set Solutions

1. Consider the logistic function f(x) = rx(1 − x) where 0 < r ≤ 4. In the lesson we saw (by

looking at a plot of the iterates) that when r > 3 this function has a two-cycle. Now, let’s

show it algebraically. Last week we learned that we can solve for the period two points of f(x)

by solving the expression f [2](x̄) = x̄, however as f(x) gets more complicated this can leave us

with some messy equations to solve. In this question we will work through an easier way to

solve for the two-cycle of f(x).

(a) Let {p1, p2} be the two-cycle of f(x). In order for this to be a two-cycle we must have

that f(p1) = p2 and f(p2) = p1. Use this fact to write down two expressions relating p1

and p2.

(b) Now subtract the two expressions you found in (a) and use the fact that p1 6= p2 to simplify

the resulting expression. You should end up with an expression which is linear in both p1

and p2.

(c) Finally, substitute this expression back into one of the expressions you found in (a) to solve

for either p1 or p2. Use this result to show that f(x) only has a (real-valued) two-cycle

when r > 3.
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Solution:

(a) Using f(p1) = p2 and f(p2) = p1 we have the following two expressions

rp1(1− p1) = p2

rp2(1− p2) = p1

which relate p1 and p2.

(b) Subtracting the two expressions from (a) gives

rp1(1− p1)− rp2(1− p2) = p2 − p1
r(p1 − p2)− r(p21 − p22) = p2 − p1

r(p1 − p2)− r(p1 − p2)(p1 + p2) = p2 − p1.

Since p2 6= p1 (by the definition of a two-cycle) we can divide both sides by p1 − p2,
resulting in

r − r(p1 + p2) = −1

p1 + p2 =
1 + r

r

p1 =
1 + r

r
− p2.

(c) Finally, we substitute our result from (b) back into one of our expressions from (a)

to solve for p1 or p2. Since p1 and p2 are interchangeable in our initial formulation

it doesn’t matter which one we solve for.

rp2(1− p2) =
1 + r

r
− p2

rp2 − rp22 =
1 + r

r
− p2

rp22 − (r + 1)p2 +
1 + r

r
= 0.
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Using the quadratic formula we get

p2 =
r + 1

2r
±

√
(r + 1)2 − 4r 1+r

r

2r

=
r + 1

2r
±
√

(r + 1)(r − 3)

2r
.

Since r > 0, this has two distinct (real) solutions when r > 3. Thus, we have a

two-cycle when r > 3.

2. Consider a circle C which has radius 1. Now consider inscribing C with a regular polygon Pn

which has 2n equal sides, as shown in the figure below. The idea is that we can consider the

length (Ln) of the perimeter of Pn as an approximation for the circumference (L = 2π) of the

circle C.

(a) Write down an expression for Ln (the length of the perimeter of Pn).

(b) CHALLENGE (You will need to be familiar with limits in order to solve this next part.)

Show that limn→∞ Ln = L = 2π.

Hint: You may work with angles in either degrees or radians (if you are familiar with

radians). You will need to use the fact that limx→0
sin(x)
x

= 1 (when x is in radians) or that

limx→0
sin(x)
x

= π
180

(when x is in degrees).
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Solution: Working with angles in degrees (solution using radians is very similar):

(a) To start, we need the length of each side of Pn, which is given by

2 · sin
(
θn
2

)
= 2 · sin

(
360◦

2n+1

)
as seen on the following figure.

Since Pn has 2n sides, the length of its perimeter is given by

Ln = 2n · 2 · sin
(

360◦

2n+1

)
= 2n+1 · sin

(
360◦

2n+1

)
.

(b)

L = lim
n→∞

Ln = lim
n→∞

2n+1 · sin
(

360◦

2n+1

)
= lim

n→∞

sin
(
360◦

2n+1

)
1

2n+1
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Now, let xn = 360◦

2n+1 . As n→∞, xn → 0.

lim
n→∞

Ln = lim
xn→0

sin(xn)
xn
360◦

= 360◦ lim
xn→0

sin(xn)

xn

= 360◦ · π

180◦

= 2π

which gives the desired result.

3. Consider the generator G sketched below:

ℓ

G r1ℓ

r
2 ℓ

ℓ

where 0 < r1 < 1,0 < r2 < 1 and 1 < r1 + r2 < 2.

(a) Starting with the set J0 = [0, 1], sketch J1 = G(J0) and J2 = G(J1).

(b) What is the length of J1 (L1)? Of J2 (L2)? In general, can you find an expression for the

length of Jn = Gn(J0)?

(c) What do you expect to happen to the length of Jn as n gets infinitely large (i.e. as the

set Jn approaches the attractor)?

Solution:

(a) J1 and J2 are as follows
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(b) The length of J1 is L1 = r1 + r2.

The length of J2 is L2 = r21 + 2r1r2 + r2 = (r1 + r2)
2.

In general, G scales the length of each line segment by a factor of r1 + r2 so we can

write Ln = (r1 + r2)
n.

(c) Since r1 + r2 > 1, limn→∞ Ln = limn→∞(r1 + r2)
n = ∞. In other words, as n gets

infinitely large, the length of Jn will approach infinity (meaning that the attractor

has infinite length).

4. Consider the following two function iterated function system (IFS) on [0, 1],

f1(x) =
1

5
x, f2(x) =

1

5
x+

4

5
.

(a) Let I0 = [0, 1] and I1 = F (I0) where F is the parallel IFS operator composed of the two

functions f1 and f2. Sketch I1 on the real number line.

(b) Let I2 = F (I1). Sketch I2 on the real number line.

(c) Let I denote the limiting set (or attractor) of this IFS. Use the scaling relation to determine
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the fractal dimension D of I.

Hint: D will be a ratio of two logarithms.

Solution:

(a) I1 is as follows

(b) I2 is as follows

(c) Letting r = 1
5

we see that N(rε) = 2N(ε) (one measuring stick of length one, two of

length 1
5
, four of length 1

25
, etc...). Putting this into the scaling relation we get

N

(
1

5
ε

)
= 2N(ε) = N(ε)

(
1

5

)−D
which implies

2N(ε) = N(ε)

(
1

5

)D
2 = 5D

D =
log(2)

log(5)
≈ 0.43.
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5. Show that the function f(x) = x2 is a contraction mapping on the domain [0, 1
4
]. Determine

the contraction factor of f .

Solution: Let x, y ∈
[
0, 1

4

]
. Then

|f(x)− f(y)| = |x2 − y2|

= |x+ y||x− y|

≤ 1

2
|x− y|.

Therefore f is a contraction mapping with contraction factor 1
2

on the domain
[
0, 1

4

]
.

6. Consider the image of the Sierpinski carpet, S, shown below. The Sierpinski carpet is a self-

similar fractal which means that is a union of contracted copies of itself.

(a) Show (by circling them on the figure) that S is made up of eight contracted copies of itself.

What is the contraction factor of these copies?

(b) Determine the similarity dimension of S.

Solution:

(a) We see that there are eight contracted copies of S, as shown on the following figure.

We can also see from the figure that each copy of S is scaled down by 1
3
, or has a

contraction factor of 1
3
.
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(b) Since S is made up of eight copies of itself, each scaled by a factor of 1
3
, the similarity

dimension of S is

D =
log(8)

log(3)
≈ 1.89.

7. Consider the image of the modified Sierpinski triangle, S, shown below.

(a) Show (by circling them on the figure) that S is made up of three contracted copies of
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itself.

(b) Imagine starting with a right triangle, S0, which has vertices at (0, 0), (1, 0), and (0, 1).

Describe (in terms of contraction factors, translations, rotations, etc...) the three map IFS

which you could use to construct S from S0.

(c) Determine the similarity dimension of S.

(d) CHALLENGE Describe a fourth map which could be added to the IFS you found in (b)

so that the attractor of the IFS is a solid triangular region.

Solution:

(a) We can see from the figure below that S is made up of three contracted copies of

itself.

(b) We can see from the figure that S is made up of three scaled copies of itself, each

contracted by a factor of 1
2
.

The first map simply scales S0 by 1
2
, resulting in the triangle in the bottom left

corner. The second map scales S0 by 1
2

and translates it to the right by 1
2
, resulting

in the triangle in the bottom right corner. Finally, the third map scales S0 by 1
2

and

translates it upwards by 1
2

to form the triangle in the top corner.
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(c) The similarity dimension of S is given by

D =
log(3)

log(2)
≈ 1.56.

(d) If we want the attractor of the IFS to be a solid triangular region, we need to add

a fourth map which will fill up the triangular gap in the middle. We can do this by

defining a map which scales S0 by 1
2
, rotates it by 180◦ and translates it by 1

2
up and

to the right.
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