

Problem of the Week Problem E and Solution

Problem

In trapezoid ABCD, sides AB and CD are parallel, and the lengths of sides AD, AB, and BC are equal. If the perpendicular distance between AB and CD is 8 units, and the length of CD is equal to 4 more than half the sum of the other three side lengths, determine the area and perimeter of trapezoid ABCD.

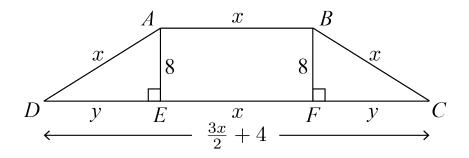
Solution

Let x represent the length of AD. Then AD = AB = BC = x. Since CD is equal to 4 more than half the sum of the other three side lengths, $CD = \frac{3x}{2} + 4$. Note that since x > 0, $\frac{3}{2}x + 4 > x$ and so CD is longer than AB.

Draw altitudes from A and B meeting CD at E and F, respectively. Then AE = BF = 8.

Let y represent the length of DE. We can show that DE = CF using the Pythagorean Theorem as follows: $DE^2 = AD^2 - AE^2 = x^2 - 8^2 = x^2 - 64$ and $CF^2 = BC^2 - BF^2 = x^2 - 8^2 = x^2 - 64$. Then $CF^2 = x^2 - 64 = DE^2$, so CF = DE = y since CF > 0.

Since $\angle AEF = \angle BFE = 90^{\circ}$ and AB is parallel to CD, it follows that $\angle BAE = \angle ABF = 90^{\circ}$ and ABFE is a rectangle so AB = EF = x.



We can now determine the relationship between x and y.

$$CD = DE + EF + CF$$
$$\frac{3x}{2} + 4 = y + x + y$$
$$\frac{x}{2} + 4 = 2y$$
$$\frac{x}{4} + 2 = y$$

CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

So $DE = CF = \frac{x}{4} + 2$. We then use the Pythagorean Theorem in $\triangle AED$.

$$AD^{2} = AE^{2} + DE^{2}$$
$$x^{2} = 8^{2} + \left(\frac{x}{4} + 2\right)^{2}$$
$$x^{2} = 64 + \frac{x^{2}}{16} + x + 4$$
$$0 = \frac{15x^{2}}{16} - x - 68$$

Using the quadratic formula, we can determine the value of x.

$$x = \frac{1 \pm \sqrt{1 - 4\left(\frac{15}{16}\right)(-68)}}{2\left(\frac{15}{16}\right)}$$
$$= \frac{1 \pm \sqrt{256}}{\frac{15}{8}}$$
$$= \frac{8 \pm 128}{15}$$

Thus, x = -8 or $x = \frac{136}{15}$. Since x > 0, we can conclude that $x = \frac{136}{15}$, so $AD = AB = BC = \frac{136}{15}$. Then $CD = \begin{pmatrix} 3\\ 2 \end{pmatrix} \begin{pmatrix} 136\\ 15 \end{pmatrix} + 4 = \frac{88}{5}$. Then we can calculate the area and perimeter of trapezoid ABCD.

Area of
$$ABCD = \frac{1}{2} \times AE \times (AB + CD)$$

$$= \frac{1}{2} \times 8 \times \left(\frac{88}{5} + \frac{136}{15}\right)$$
$$= \frac{320}{3}$$

Perimeter of
$$ABCD = DA + AB + BC + CD$$

= $3\left(\frac{136}{15}\right) + \frac{88}{5}$
= $\frac{224}{5}$

Therefore the area of trapezoid ABCD is $\frac{320}{3}$ units² and the perimeter is $\frac{224}{5}$ units.