Problem of the Month Problem 5: February 2024

This problem explores a counting technique that uses *binomial coefficients*. **The main problems** for this month are on the next page. For anyone who is not already familiar with the notation of binomial coefficients, the first page includes an introduction with a few standard exercises.

For non-negative integers n and k, the expression $\binom{n}{k}$ denotes the number of ways to choose k objects from n distinct objects. For this reason, the quantity $\binom{n}{k}$ is pronounced "n choose k".

For example, consider the four letters A, B, C, and D. There are 4 ways to select three of them. They are

$$A, B, C$$
 A, B, D A, C, D B, C, D

Since there are 4 ways to choose 3 of the objects (order does not matter – it only matters which objects are chosen), we have that $\binom{4}{3} = 4$.

Try the following exercises. Hints will be provided, but solutions will not. These exercises are intended as a way to get familiar with the notation, so they may not be explicitly useful in the problems on the next page.

- (i) Show that $\binom{5}{2} = 10$.
- (ii) What are $\binom{n}{0}$ and $\binom{n}{1}$?
- (iii) Convince yourself that $\binom{n}{k} = \binom{n}{n-k}$ for $0 \le k \le n$.
- (iv) Convince yourself that $\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$ when $0 \le k < n$.
- (v) Convince yourself that $\binom{n}{k}$ is equal to the coefficient of x^k in the expanded form of $(1+x)^n$. This is why $\binom{n}{k}$ is called a "binomial coefficient".

It turns out that there is a convenient way to compute binomial coefficients using factorial notation. If $n \ge k \ge 0$ are integers, then $\binom{n}{k} = \frac{n!}{k!(n-k)!}$. Here, m!, pronounced "m factorial", is defined so that m! = 1 when m = 0 and m = 1, and $m! = 1 \times 2 \times 3 \times \cdots \times (m-1) \times m$ for integers $m \ge 2$. It is also a useful exercise to think about why this formula for $\binom{n}{k}$ works.

- (a) For a positive integer n, show that $\binom{n+1}{2}$ is the answer to each of these three questions. Think about why the answers to all three questions are the same.
 - (i) What is $1 + 2 + 3 + \cdots + n$?
 - (ii) How many pairs (x, y) of non-negative integers satisfy $x + y \le n 1$?
 - (iii) How many triples (x, y, z) of non-negative integers satisfy x + y + z = n 1?
- (b) Let $n \ge 0$ and $r \ge 1$ be integers. Show that the following two questions have the same answer and express the common answer as a single binomial coefficient.
 - (i) How many ways are there to place n indistinguishable balls in r distinguishable cups?
 - (ii) How many non-negative integer solutions are there to the equation $x_1 + x_2 + \cdots + x_r = n$?
- (c) Let $n \ge 0$ and $r \ge 1$ be integers. By counting r-tuples of non-negative integers (x_1, x_2, \dots, x_r) that satisfy $x_1 + x_2 + x_3 + \dots + x_r \le n$, prove the identity

$$\binom{r-1}{r-1} + \binom{r}{r-1} + \binom{r+1}{r-1} + \binom{r+2}{r-1} + \dots + \binom{r-1+n}{r-1} = \binom{n+r}{r}$$

Clarification: The quantity on the left in the equation above is the sum of the binomial coefficients $\binom{r-1+m}{r-1}$ where m ranges from 0 to n.

- (d) Determine the number of non-negative integers x with $x < 10^{10}$ that have a digit sum of 21
- (e) For a positive integer $x = a_n a_{n-1} a_{n-2} \cdots a_1 a_0$ where the a_i are the digits of x, the alternating sum of x is the expression $a_0 a_1 + a_2 a_3 + \cdots + (-1)^n a_n$. For example, the alternating sum of 744923 is 3 2 + 9 4 + 4 7 = 3. Determine the number of non-negative integers with at most 8 digits that have an alternating sum equal to 0.
- (f) How many ways are there to choose integers a, b, and c such that $1 \le a < b < c \le 2024$ and a+b+c=2027?