Problem of the Month Problem 3: Three-sign sums

December 2024

Hint

1. Ignoring the empty sublist, there are fifteen sublists of $\{1, 2, 3, 4\}$. However, seven of those are sublists of $\{1, 2, 3\}$. So, when computing f_4 , you have already done almost half the work when you computed f_3 ! For the remaining half of the work, notice that $\mu(\{a, b, c\}) = \mu(\{a, b\}) - c$ and $\mu(\{a, b, c, d\}) = \mu(\{a, b, c\}) + d$.

See if you can then use your work for f_4 to reduce the work required for you to compute f_5 . Alternatively, ignoring the empty sublist, there are thirty-one sublists of $\{1, 2, 3, 4, 5\}$, you can just roll up your sleeves and compute the 3-sign sums of all of them!

- 2. Split up your computation of f_{n+1} into adding up the 3-sign sums of those sublists of $\{1, \ldots, n+1\}$ that contain n+1, and those that do not contain n+1. When adding up the 3-sign sums of those sublists that contain n+1, notice that $\mu(\{a, b, n+1\}) = \mu(\{a, b\}) (n+1)$ and $\mu(\{a, b, c, n+1\}) = \mu(\{a, b, c\}) + (n+1)$.
- 3. We have $\alpha^2 + \alpha = -1$. Rearranging we get

$$-\alpha = 1 + \alpha^2$$
, $-\alpha^2 = 1 + \alpha$, and $\alpha^2 + \alpha + 1 = 0$.

Also, remember that $\alpha^4 = \alpha(\alpha^3)$.

4. (a) Use the binomial theorem to expand $g_n(1)$, $g_n(\alpha)$ and $g_n(\alpha^2)$, keeping in mind your answer from 3(a). What happens if you multiply $g_n(\alpha)$ and $g_n(\alpha^2)$ by powers of α ?

Compute $g_n(1) + g_n(\alpha) + g_n(\alpha^2)$. This isn't quite what you want, but can you adjust the terms somehow to get what you want?

- (b) You should find that d_n involves powers of (-1) in terms of n, and powers of α in terms of n. Powers of (-1) depend on what the remainder of the power is when divided by 2. How do powers of α behave? You may have to split your computation of d_n up into 6 cases.
- 5. Combine your answers from 1(a), 2, and 4(b).