
Problem of the Month
Solution to Problem 1: A bit of binary

October 2024

1. (a) 279 = [100010111]2 since 279 = 28 + 24 + 22 + 21 + 20.

(b) The binary expansion of 2k−1 is simply a string of k 1’s. That is, 2k−1 = [

k︷ ︸︸ ︷
11 · · · 1]2.

Let’s prove this. First note that 2k − 1 = 2k−1 + (2k − 1 − 2k−1). Some simplifying
gives 2k − 1 − 2k−1 = 2k−1 − 1. Therefore, our procedure for computing the binary
expansion of 2k − 1 looks like this:

2k − 1 = 2k−1 + (2k−1 − 1)

2k−1 − 1 = 2k−2 + (2k−2 − 1)

...

22 − 1 = 21 + (21 − 1)

21 − 1 = 20

Therefore 2k − 1 = 2k−1 + 2k−2 + · · ·+ 21 + 20 so 2k − 1 = [

k︷ ︸︸ ︷
11 · · · 1]2.

(c) We could just solve this problem by letting our calculator deal with the decimal
approximation of

√
3, but we can’t really be sure it wouldn’t make some rounding

errors. Let’s compute this, proving we have the correct binary digits along the way.

First, since 22 > 3 > 12, we know 21 >
√
3 > 20. Therefore, our first step in computing

the binary expansion is
√
3 = 20 + (

√
3− 1) and a0 = 1. To decide whether a1 = 0 or

a1 = 1, we need to decide whether
√
3− 1 < 2−1 or

√
3− 1 > 2−1. We have

(1 + 2−1)2 =
9

4
< 3

so 1 + 2−1 <
√
3 and 2−1 <

√
3 − 1. Therefore a1 = 1. For the next binary digit we

need to compare
√
3− 1− 1

2
with 1

4
. Similar to the previous computation we have

(1 + 2−1 + 2−2)2 =
49

16
> 3.

We then conclude
√
3 − 20 − 2−1 < 2−2 and a2 = 0. To compute a3 we need to

compare
√
3− 20 − 2−1 to 2−3. We have

(1 + 2−1 + 2−3)2 =
169

64
< 3

so
√
3− 20 − 2−1 > 2−3 and a3 = 1. Once more, to compute a4 we have

(1 + 2−1 + 2−3 + 2−4)2 =
729

256
< 3
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so
√
3− 20 − 2−1 − 2−3 > 2−4 and a4 = 1. Therefore

a0 = 1, a1 = 1, a2 = 0, a3 = 1, and a4 = 1

and
√
3 = [1.1011 . . .]2.

2. (a) k = 3 and n = 1 works since 23 1
7
= 8

7
= 1

7
+1. There are infinitely many other correct

answers (k = 6 and n = 9 is another example), but we will use k = 3 and n = 1 going
forward.

(b) Adding 1 to the number [0.a1a2 . . .]2 changes the expansion to [1.a1a2 . . .]2. Just like
how multiplying by 103 moves the decimal point three places to the right, multiplying
by 23 moves the point in a binary expansion three places to the right (convince yourself
this is true!). Therefore,

23
1

7
= [a1a2a3.a4a5 . . .]2 and

1

7
+ 1 = [1.a1a2a3 . . .]2.

(c) From the previous part we have two different binary expressions for the same number:

[a1a2a3.a4a5 . . .]2 = 23
1

7
=

1

7
+ 1 = [1.a1a2a3 . . .]2.

Since binary expansions are unique (see Fact 2 from above the statement of the
problem on the problem sheet), these two binary expansions must be exactly the same!
Comparing the bits (remember, bits are the binary digits) of these two expansions
gives

a1 = a2 = 0, a3 = 1, and ak = ak+3

for all natural numbers k. Therefore 1
7
= [0.001]2.

(d) We will follow the same procedure as we did for computing the binary expansion of
1
7
in the first three parts of this question.

First, we wish to find integers k and n so that 2k 3
11

= 3
11
+ n. At this point, we don’t

even know if such integers exist, but let’s start looking anyway. If such a k and n
exist, we would have

3 · 2k

11
=

3 + 11n

11

so 3 · 2k = 3 + 11n. We can now search through values of k, hoping that 3 · 2k − 3 is
a multiple of 11. Let’s do exactly this.

k 3 · 2k − 3 multiple of 11?
1 3 no
2 9 no
3 21 no
4 45 no
5 93 no
6 189 no
7 381 no
8 765 no
9 1533 no
10 3069 YES!
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Great! So 210 3
11

= 3
11

+ 3069
11

= 3
11

+ 279. Now let 3
11

= [0.a1a2a3 . . .]2 (note that since
3
11

< 1, the only binary digit to the left of the point is 0). By the solution to 1(a)
above we have

3

11
+ 279 = [100010111.a1a2a3 . . .]2.

Since multiplying by 210 shifts the point 10 places to the right we have

210
3

11
= [a1a2a3a4a5a6a7a8a9a10.a11a12a13 . . .]2.

Comparing these two expansions gives us

a1 = 0

a2 = 1

a3 = 0

a4 = 0

a5 = 0

a6 = 1

a7 = 0

a8 = 1

a9 = 1

a10 = 1, and

at = at+10

for all integers t ≥ 1. Therefore 3
11

= [0.0100010111]2.

3. The key observation here is that
√
p is not rational. Let

√
p = [anan−1 · · · a1a0.a−1a−2a−3 · · · ]2.

Suppose there are only finitely many 1’s. Then there is some k so that a−k is the very last
1 that appears. Then

√
p = an · 2n + an−1 · 2n−1 + · · ·+ a1 · 2 + a0 +

a−1

2
+

a−2

22
+ · · ·+ a−k

2k

which is a rational number, contradicting the fact that
√
p is irrational. Therefore, the

binary expansion of
√
p must have infinitely many 1’s.

Now suppose that there are only finitely many 0’s. If there are only finitely many 1’s, then
the above argument shows

√
p is rational, so we must have infinitely many 1’s. Then the

binary expansion must take the form

√
p = [anan−1 · · · a1a0.a−1a−2 · · · a−k01]2

that is, the binary expansion eventually becomes just a string of 1’s. However (by Fact
1 at the beginning of the questions in the problem document), we know such a binary
expansion is equal to the binary expansion

√
p = [anan−1 · · · a1a0.a−1a−2 · · · a−k1]2

and we again have only finitely many 0’s (by assumption) and finitely many 1’s (as we
have just shown), contradicting the fact

√
p is irrational. Alas, we are forced to conclude

that the binary expansion of
√
p has infinitely many 0’s and infinitely many 1’s.
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4. Let
√
2 = [1.a1a2a3 . . .]2. Choose k so that ak = 1 (such a k exists since there are infinitely

many 1’s in the binary expansion of
√
2 by Question 3). Then

2k−1
√
2 = [1a1a2 · · · ak−1.1ak+1ak+2 · · · ]2

so

⌊2k−1
√
2⌋ = [1a1a2 · · · ak−1]2 and 2k−1

√
2− ⌊2k−1

√
2⌋ = [0.1ak+1ak+2 · · · ]2.

Since there are infinitely many 1’s in the binary expansion of
√
2, [0.0ak+1ak+2 · · · ]2 > 0.

Therefore,

2k−1
√
2− ⌊2k−1

√
2⌋ = [0.1]2 + [0.0ak+1ak+2 · · · ]2 > [0.1]2 =

1

2
.

By the definition of the floor function, 1 > 2k−1
√
2 − ⌊2k−1

√
2⌋. Combining the two

inequalities gives

1 > 2k−1
√
2− ⌊2k−1

√
2⌋ > 1

2
.

Some manipulation of the inequalities gives

2k−1
√
2− 1 < ⌊2k−1

√
2⌋ < 2k−1

√
2− 1

2
.

Multiplying all sides of the inequalities by
√
2 and then adding

√
2 gives

2k < (⌊2k−1
√
2⌋+ 1)

√
2 < 2k +

√
2

2
.

Let m = ⌊2k−1
√
2⌋+ 1, which is a positive integer. Since

√
2
2

< 1 we have

2k < m
√
2 < 2k + 1

and therefore ⌊m
√
2⌋ = 2k. Since there are infinitely many k so that ak = 1, there are

infinitely many elements of the sequence

⌊
√
2⌋, ⌊2

√
2⌋, ⌊3

√
2⌋, ⌊4

√
2⌋, ⌊5

√
2⌋, . . .

that are powers of 2.
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