
Grade 6 Math Circles

Computer Science

Computer Science

Computer Science is the study of computers and algorithmic processes, including their principles,

their hardware and software designs, their applications, and their impact on society. In these lessons,

we will focus more on computer programming, which is the process of designing and building an

executable computer program to accomplish a specific computing result or to perform a specific task.

These programs are written in programming languages, which are similar to other languages in

the sense that they are defined through the use of syntax and semantic rules, to determine structure

and meaning, respectively.

Syntax is the grammatical structure of a language, whereas semantics is the meaning being con-

veyed. A sentence that is syntactically correct is not always semantically correct.

Example 1

The sentence “That was a greatest film” is syntactically incorrect because it uses incorrect

grammar.

The sentence “The snake picked it up with its hand” is syntactically correct, but semantically

incorrect because snakes do not have hands, meaning the sentence doesn’t make sense.

Example 1 shows us examples of syntax errors and semantic errors in the English language.

Similarly, programming languages also have syntax and semantic errors, which will be discussed later

in the lesson.

There are a number of programming languages that are very popular in the world. Some of the

top ones are C, Java, Python, C++, C#, JavaScript, R and SQL. The differences between

programming languages is syntax, and depending on the languages, the differences can be either

minimal or significant. For the next two lessons, we will focus on Python.

Python

Python is a high-level general-purpose programming language, with a design philosophy that empha-

sizes code readability with its use of significant indentation. Because of this, Python is a very useful

1

programming language for small-scale and large-scale projects. In addition, there are no restrictions

to what we are allowed to create a program for, thus, Python has an infinite number of uses. We

create these programs in Python through coding.

Coding is the process of creating instructions for computers using programming languages. To put

it simply, it is our way of telling the computer what we want it to do. And as stated above, this can

be as small as one line of code, or as large as millions of lines of code. Coding can prove to be very

frustrating at times because computers are both very smart and very dumb, in the sense that they

can perform many computations almost instantaneously, but they require exact instructions in order

to be able to execute them properly.

Let’s start with learning how to define variables and assign values to them. Unlike elsewhere in

mathematics, variables don’t really mean the same thing in computer science. They are able to have

any value, but they can only have one value at a time. To define a variable in Python is to just assign

it a value. For example, if we want x to have a value of 6 in Python, then we would simply write the

following line of code:

An important thing to note here is that ‘=’ does not necessarily mean equality in Python. Instead,

‘=’ is used to assign values. Specifically, it assigns the value of the right-hand side as the value of

the left-hand side. So, if we have the variables x and y and we write the code x = y, this means that

the value of x is set to the value of y. It does not mean that x and y are the same. If we later change

the value of y, then the value of x does not also change, it remains the same.

2

Example 2

What are the values of a, b and c after the following code is run?

Solution 2

We will keep track of each value after each step using the table below:

Initial Line 1 Line 2 Line 3 Line 4

a None 3 3 3 −4

b None None 8 8 8

c None None None −4 −4

Thus, after the code is run, we have that a = −4, b = 8 and c = −4.

Note that None is not a value for a variable, it simply represents that the variable currently has no

value. Also, after Line 4 is executed, the value of a changes from 3 to −4. This is because when the

line a = c is executed, the previous value of a is overwritten and now set as the value of c.

This processing of keeping track of the values of variables while the code is executed is known as

tracing. It can be very helpful in cases where programs are not producing the desired outcomes

because we can follow the steps to see where it may be going wrong. Tracing can be done by hand,

like in Example 2, or it can be done by using a stepper, which is a program that traces the code for

you and walks you through the execution. One such stepper is Python Tutor, which is linked here.

Unless you prefer to download Python-compatible software, Python Tutor will be the main resource

you use over the next two lessons for coding.

A short tutorial video for Python Tutor is linked here, which will go over Example 2.

Activity 1

What are the values of a, b, c and d after the following code is run?

3

https://pythontutor.com
https://youtu.be/1g8r1A0OW14

Data Types

Data types are the classification or categorization of data items in computer programming. Same

(or similar) data types can be compared, while different data types cannot be compared. There are

many data types in Python, but for these lessons we will only be focusing on the following four types:

• int ⇒ integers, all positive and negative integers (i.e., −1)

• float ⇒ all positive and negative numbers represented as decimals (i.e., 2.0)

• str ⇒ strings, all text enclosed in quotations (i.e., ‘hello’ or “hello”)

• bool ⇒ boolean, True or False

Activity 2

Determine the data type of the following values in Python.

(a) −4839.1

(b) “76”

(c) 0

(d) ‘False’

We can change the data types of variables with the following:

Code Description Example

int(a)
If a is float, then decimal is dropped

If a is str, then quotations are dropped

int(3.7) =⇒ 3

int(“1”) =⇒ 1

float(a)
If a is int, then .0 is added

If a is str, then quotations are dropped

float(2) =⇒ 2.0

float(“9.3”) =⇒ 9.3

str(a) If a is int or float, then quotations are added
str(17) =⇒ “17”

str(7.4) =⇒ “7.4”

Python Operators

In order for computer programs to be able to perform computations, we must have a way for values

to be compared or interact with one another. We are able to do this with Python operators. Below

are three tables that define different operators used in Python, along with examples for them. These

4

tables are separated based on the types of operators.

For the following tables, let a = 5, b = 2, c = True and d = False.

Arithmetic Operators

Code Description Example

+ Adds values on either side of the operator a + b =⇒ 7

− Subtracts right-hand operand from left-hand operand a− b =⇒ 3

* Multiplies values on either side of the operator a * b =⇒ 10

/ Divides left-hand operand by right-hand operand a / b =⇒ 2.5

//
Divides left-hand operand by right-hand operand and returns the

integer quotient
a // b =⇒ 2

%
Divides left-hand operand by right-hand operand and returns the

remainder
a % b =⇒ 1

** Left-hand operand to the power of right-hand operand a ** b =⇒ 25

Note that these operators can only be applied on values that are int or float. The one exception is

+ which can be applied on two str values (e.g. “good” + “night” =⇒ “goodnight”).

Comparison Operators

Code Description Example

==
If the values of two operands are equal, then the condition

becomes True
a == b =⇒ False

!=
If the values of two operands are not equal, then the condition

becomes True
a != b =⇒ True

>
If the value of the left operand is greater than the value of the

right operand, then the condition becomes True
a > b =⇒ True

<
If the value of the left operand is less than the value of the

right operand, then the condition becomes True
a < b =⇒ False

>=
If the value of the left operand is greater than or equal to the

value of the right operand, then the condition becomes True
a >= b =⇒ True

<=
If the value of the left operand is less than or equal to the

value of the right operand, then the condition becomes True
a <= b =⇒ False

5

Boolean/Logical Operators

Code Description Example

and
If both operands are true, then the condition becomes

True
(c and d) =⇒ False

or
If any of the two operands are true, then the condition

becomes True
(c or d) =⇒ True

not Used to reverse the logical state of its operand
not(c and d) =⇒ True

not(c or d) =⇒ False

These three operators can be thought of in terms of probability concepts: and is similar to intersec-

tions, or is similar to unions, and not is similar to complements.

Take some time to try out all these operators in Python Tutor (or another resource) so that you are

comfortable using them. Note, that when you perform an arithmetic operator with an int and float,

the result will be a float.

Example 3

Let a = 9, b = True, c = “math′′, d = False, e = 4.0 and f = “circles′′. Determine the

following:

(a) f + c

(b) not(b)

(c) (a * e)− (a // e)

(d) (a > e) or (d and b)

Solution 3

Python Tutor can solve these instantaneously, so let’s do it by hand to see how we get each

result.

(a) f + c =⇒ “circles′′ + “math′′ =⇒ “circlesmath′′

(b) not(b) =⇒ not(True) =⇒ False

(c) (a * e)− (a // e) =⇒ (9 * 4.0)− (9 // 4.0) =⇒ 36.0− 2.0 =⇒ 34.0

(d) (a > e) or (d and b) =⇒ (9 > 4.0) or (False and True) =⇒ True or False

=⇒ True

6

Programs

So far, we’ve covered defintions, data types, how to define variables, tracing, and how to perform

operations. But, we haven’t discussed creating programs to compute specific results or perform

specific tasks, which is the essence of computer programming.

For example, how could we write a program that gives us the sum of the digits of a 4-digit number?

Below is a general outline for a computer program in Python.

The first line of each program begins with def, followed by the name of the program (program name).

Next to the program name, inside the brackets, are the variables that we want to input into the

program, called parameters. At the end of the first line we write “:”

Next, comes the body of the program, which is indented. Here is where we write all the necessary

code in order for our program to compute what we want it to compute.

After we have our desired outcome, we can either return it using return, or print it using print().

Returning outcomes is more useful when we wish to use the outcome for additional computations,

and printing is more commonly used when we just want to know the outcome.

The green lines of code above are called comments. We can write comments by writing “#” and

then everything else we write after on that line will be a comment. Python will ignore comments

when a program is executed. They are simply there for us, making the code easier to read and

understand.

7

Example 4

Write a program called sum digits that inputs a positive 4-digit number and outputs the sum

of the digits. What is returned when we run the following code?

(a) sum digits(4391)

(b) sum digits(1001)

(c) sum digits(9999)

(d) sum digits(2021)

Solution 4

(a) sum digits(4391) returns 17

(b) sum digits(1001) returns 2

(c) sum digits(9999) returns 36

(d) sum digits(2021) returns 5

Here is a short video for solving Example 4 using Python Tutor.

8

https://youtu.be/kAFLYb_eQgQ

Activity 3

In order to convert temperature from Celsius to Fahrenheit, first multiply the temperature in

Celsius by 1.8 and then add 32. Write a Python program called celsius to fahrenheit that

inputs a temperature in Celsius and outputs the corresponding temperature in Fahrenheit.

What is the corresponding Fahrenheit temperature for the following?

(a) 0 ◦C

(b) 100 ◦C

(c) 18 ◦C

(d) −40 ◦C

Syntax and Semantics Errors

Within computer programming, syntax errors are errors that “break” the code. This means that

if you try to run a computer program that has syntax errors, the code will not be able to execute.

Syntax errors are easy to find because you will receive an error message that the code is unable to

run. For example, trying to run the line of code:

a = 100 + “hello′′

is a syntax error because we are attempting to add an int and a str.

Within computer programming, semantic errors are errors that arise from our own incorrect logic.

This means that all our code is syntactically correct, but our method of solving the problem is

incorrect, so our outcome will be incorrect. These can be very difficult to find because we will receive

no error messages. The best way to find semantic errors is either by tracing or using a stepper, like

Python Tutor. For example, suppose we have the following code for Example 4:

9

Here the code is all syntactically correct, so we won’t get any error messages, but our logic for solving

the problem is incorrect, so we have a semantic error. If we run the code

sum digits(4391)

instead of getting 17, as we should, we will get 484, which is clearly incorrect. In order to correct

this mistake, we must trace the program to see where we went wrong, and then fix the error.

A final note for this lesson is the input() function, which incorporates user input while the code is

being run. Observe the example below.

Here, when we run the code, we are presented with a textbox with the prompt: “Enter a word:”.

Whatever value is entered will be the value of a, which will be a str. The same will occur for b

immediately after. After this, the code will run as normal and will print the value of a followed by

the value of b, with a space in between. Try running this code on your own, as well as other cases

using input().

10

