
Grade 9/10 Math Circles

Linear Diophantine Equations Part 1

Introduction

In this lesson (and the next), we will explore linear Diophantine equations. For this lesson, we will

focus on what these equations are, when a solution exists, and how to find a solution when one exists.

In the lesson two weeks from now, we will explore how to find all solutions to linear Diophantine

equations, and also look at finding solutions under various constraints.

Diophantine Equations

A Diophantine equation, named after Diophantus of Alexandria, is a polynomial equation with

integer coefficients that is intended to be solved with integer solutions.

One Diophantine equation you’ve likely seen is

x2 + y2 = z2

Positive integer solutions to this Diophantine equation (for example, x = 3, y = 4, z = 5) correspond

to right-angled triangles with integer side lengths.

Another famous Diophantine equation is

xn + yn = zn

where n is an integer ≥ 3. It has been shown that this Diophantine equation has no solution where

x, y, and z are positive integers. This was first stated by the mathematician Fermat in the 1600s,

but was not proven until 1994 by the mathematician Andrew Wiles.

Linear Diophantine Equations

In this lesson, we’re going to focus on linear Diophantine equations. A (two-variable) linear Dio-

phantine equation is an equation of the form

ax + by = c
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where a, b, and c are given integers and we are interested in solving for integers x and y.

Example 1

Sara needs $2.15 to buy a large coffee. She only has quarters and dimes, and the cashier insists

that she pay with exact change. Is there a combination of quarters and dimes that will total

$2.15?

Solution:

We need to solve the equation 25x + 10y = 215, where x and y are integers. Since x and y

represent the number of quarters and dimes, respectively, that Sara uses, notice that it makes

sense that we are only interested in integer solutions to this equation. Further, we should also

ensure that x and y are not negative.

By using systematic guess and check, we can come up with the following possible solutions:

x = 1 and y = 19, or x = 3 and y = 14, or x = 5 and y = 9, or x = 7 and y = 4

There are no other solutions. Can you see why?

Example 2

A robot can move backwards or forwards with big steps (130 cm) or small steps (50 cm). Is

there a series of moves that the robot can make to end up 10 cm ahead of where it started?

Solution:

We need to solve the equation 130x + 50y = 10, where x and y are integers.

Using guess and check, we find one (of many) solutions to be x = 2 and y = −5. That is, if

the robot takes 2 big steps forward and 5 small steps backward, it will end up 10 cm ahead of

where it started.

There are many other solutions. Can you find another solution?

It is not always easy to find a solution to a linear Diophantine equation by trial-and-error.

For example, trial-and-error could be time consuming if we used that technique to find integers x

and y that satisfy the linear Diophantine equation

1053x + 481y = 13
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Main Question for this Lesson

Given three integers a, b, and c, how can we find a solution to ax + by = c, where x and y are

integers?

Be careful! There may not be an integer solution! In this lesson, we will determine conditions on

a, b, and c that guarantee an integer solution to the equation ax + by = c, and learn a method for

finding such a solution, in the case where one exists.

When does a solution exist?

Consider the linear Diophantine equation

3x + 6y = 5

If we divide both sides by 3, the equation becomes

x + 2y =
5

3

Stop and Think

Before reading further, can you see a problem with it being true that x + 2y = 5
3
?

Since we are told 3x + 6y = 5 is a linear Diophantine equation, a solution must have both x and y

being integers. If x and y are both integers, x + 2y must also be an integer, but 5
3

is not an integer!

Therefore, the equation 3x + 6y = 5 cannot have any integer solutions.

In general, we have the following result:

Necessary Condition for Solutions

If d is an integer that divides both a and b, but d does not divide c, then the linear Diophantine

equation

ax + by = c

has no solutions.
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Exercise 1

Does the linear Diophantine equation 14x + 35y = 4 have a solution?

If we’re going to discuss whether or not we can solve the linear Diophantine equation ax+ by = c for

integers x and y, it appears as though we’ll need to investigate common divisors of a and b.

GCDs and the Euclidean Algorithm

Suppose a and b are integers. If d is an integer that divides both a and b, we call d a common

divisor of a and b. The largest integer that divides both a and b is called the greatest common

divisor of a and b, denoted gcd(a, b).

Example 3

What is gcd(48, 32)?

Solution:

Let’s list the positive divisors of each.

Positive divisors of 48: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48

Positive divisors of 32: 1, 2, 4, 8, 16, 32

Since the largest divisor that they have in common is 16, gcd(48, 32) = 16.

Finding gcd(a, b) by factoring a and b may be very time consuming if a and b are large.

For example, try to calculate gcd(3551, 4399) or gcd(104 723, 103 093) by factoring.

Instead, we will use a method that does not require us to find a single divisor of a or b. The first

step is the division algorithm.

The Division Algorithm

Let a and b be integers with b > 0. There are unique integers q (the quotient) and r (the

remainder) such that

a = bq + r and 0 ≤ r < b

For example, suppose a = 15 and b = 6. We can write 15 = 6 · 2 + 3, so q = 2 and r = 3. Notice

that it is also true that 15 = 6 · 1 + 9 and 15 = 6 · 3 + (−3); however, neither 9 nor −3 satisfy the
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requirement that they are ≥ 0 and also < b. So, it turns out that q = 2 and r = 3 are the unique q

and r satisfying the division algorithm when a = 15 and b = 6.

Example 4

For a and b, calculate q and r from the division algorithm.

(a) a = 30, b = 6

(b) a = 9, b = 6

(c) a = −2, b = 6

Solution:

(a) 30 = 6 · 5 + 0, so q = 5, r = 0.

(b) 9 = 6 · 1 + 3, so q = 1, r = 3.

(c) −2 = 6 · (−1) + 4, so q = −1, r = 4.

Now that we know how to find q and r in the division algorithm, we are ready to learn an important

fact that will help us calculate greatest common divisors more efficiently.

Important Fact

If a = bq + r, then gcd(a, b) = gcd(b, r).

As we saw above, when a = 15 and b = 6, we have q = 2 and r = 3. Notice that gcd(15, 6) = 3 and

gcd(6, 3) = 3. So the important fact holds, since gcd(15, 6) = gcd(6, 3).

Similarly, in Example 4, we saw that when a = 30 and b = 6, we have q = 5 and r = 0. Notice that

gcd(30, 6) = 6 and gcd(6, 0) = 6. So the important fact holds, since gcd(30, 6) = gcd(6, 0). Note that

gcd(a, 0) = a for any positive integer a, since 0 is divisible by every positive integer.

Exercise 2

For a and b, verify that the important fact holds.

(a) a = 9, b = 6

(b) a = −2, b = 6

How can we use the important fact to calculate greatest common divisors more efficiently? We will
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iterate the division algorithm and apply the important fact each time.

Example 5

Calculate gcd(117, 55).

Solution:

Since 117 = 55 · 2 + 7, we have q = 2 and r = 7 from the division algorithm. Thus, by the

important fact, we know gcd(117, 55) = gcd(55, 7).

Now, let’s repeat this process on 55 and 7.

Since, 55 = 7 · 7 + 6, we have q = 7 and r = 6 from the division algorithm. Thus, by the

important fact, we know gcd(55, 7) = gcd(7, 6).

Now, let’s repeat this process on 7 and 6.

Since, 7 = 6 ·1+1, we have q = 1 and r = 1 from the division algorithm. Thus, by the important

fact, we know gcd(7, 6) = gcd(6, 1).

Thus, we can conclude that gcd(117, 55) = gcd(55, 7) = gcd(7, 6) = gcd(6, 1) = 1.

This method of repeatedly using the division algorithm along with the important fact to find the

greatest common divisor of two integers is called the Euclidean algorithm.

The Euclidean Algorithm

Input: Positive integers a and b.

Step 1: Arrange a and b so that a ≥ b.

Step 2: Write a = bq + r, with 0 ≤ r < b.

Step 3: If r = 0, then stop! If r > 0, then go back to Step 1, this time with the pair (b, r).

Output: The last non-zero remainder r if such an r exists, or else output b.

The greatest common divisor of the two integers will be equal to the last non-zero remainder that

is seen in the Euclidean algorithm. When working through this algorithm, we will use the fact that

gcd(a, 0) = a, for any positive integer a.

Let’s work through another example to convince ourselves that this algorithm will always output

gcd(a, b).
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Example 6

Calculate gcd(481, 1053) using the Euclidean algorithm.

Solution:

Here we will apply the Euclidean algorithm to the pair (481, 1053). We will keep track of what

is happening with the gcd on the right-hand side.

As 481 < 1053, set a = 1053 and b = 481 gcd(481, 1053) = gcd(1053, 481)

Write 1053 = 481 · 2 + 91 (r = 91) gcd(1053, 481) = gcd(481, 91)

Write 481 = 91 · 5 + 26 (r = 26) gcd(481, 91) = gcd(91, 26)

Write 91 = 26 · 3 + 13 (r = 13) gcd(91, 26) = gcd(26, 13)

Write 26 = 13 · 2 + 0 (r = 0) gcd(26, 13) = gcd(13, 0) = 13

From the gcd equalities on the right hand side, we see that gcd(481, 1053) = gcd(13, 0) = 13.

Stop and Think

Since r < b, the integers get smaller after each iteration of the division algorithm, and so

this procedure must eventually stop. Can you convince yourself that you will always reach a

remainder of zero, and that the output will always be gcd(a, b)?

Exercise 3

Calculate gcd(427, 616) using the Euclidean algorithm.

Using the Euclidean algorithm to solve linear Diophantine equations

As we’ll see in our next example, the Euclidean algorithm not only finds gcd(a, b), but by working

backwards, we can actually use it to solve linear Diophantine equations!
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Example 7

Find integers x and y such that 1053x + 481y = 13.

Solution:

As we saw in Example 6, the Euclidean algorithm gives

1053 = 481 · 2 + 91 (1)

481 = 91 · 5 + 26 (2)

91 = 26 · 3 + 13 (3)

26 = 13 · 2 + 0 (4)

And so gcd(1053, 481) = 13. Notice that this is the value of c in the equation. We can exploit

this fact by tracing our steps in the Euclidean algorithm and working backwards as follows:

From (3):

13 = 91 − 3 · 26

Substituting for 26 using (2):

13 = 91 − 3(481 − 5 · 91)

Simplifying:

13 = 16 · 91 − 3 · 481

Substituting for 91 using (1):

13 = 16(1053 − 2(481)) − 3 · 481

Simplifying:

13 = 16(1053) − 35(481)

That is, 1053(16) + 481(−35) = 13. Therefore, one solution is x = 16, y = −35. Check!

Exercise 4

Find integers x and y such that 427x + 616y = 7.

We now have a strategy to find integers x and y such that ax + by = c when c = gcd(a, b): We

can work backwards through our steps in the Euclidean algorithm, starting with the line where
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r = gcd(a, b), as we saw in Example 7. But what if we need to solve ax+ by = c, where c is not equal

to gcd(a, b)?

Example 8

Find integers x and y such that 1053x + 481y = 39.

Solution:

Notice that 39 = 3 × 13. From the Example 7, we know that 1053(16) + 481(−35) = 13.

Multiplying the entire equation by 3 gives

3 (1053(16) + 481(−35)) = 3(13)

3 (1053(16)) + 3 (481(−35)) = 3(13)

1053(3 · 16) + 481(3 · (−35)) = 39

1053(48) + 481(−105) = 39

Thus, there is a solution, namely x = 48, y = −105. Check!

From Example 8, we can see that if gcd(a, b) divides c, then we can use a solution to ax+by = gcd(a, b)

to find a solution to the equation ax + by = c. What if gcd(a, b) does not divide c?

Example 9

Find integers x and y such that 1053x + 481y = 50.

Solution:

Suppose that integers x and y that satisfy the above equation. Since 13 = gcd(1053, 481), we

can factor 13 out of the left hand side of the equation:

1053x + 481y = 50

(13 · 81)x + (13 · 37)y = 50

13 (81x + 37y) = 50

81x + 37y =
50

13

But since x and y are integers, this last equality is impossible!

Therefore, there is no solution to the linear Diophantine equation 1053x + 481y = 50.
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From Example 9, we can see that if gcd(a, b) does not divide c, then the equation ax + by = c does

not have a solution where x and y are integers.

The following theorem summarizes what we have observed about solutions to linear Diophantine

equations.

Theorem

The linear Diophantine equation

ax + by = c

has a solution if and only if gcd(a, b) divides c.

Using the Euclidean algorithm and working backwards, we can find integers x and y such that

ax + by = gcd(a, b)

Once we have found x and y such that ax + by = gcd(a, b), we can multiply this solution by
c

gcd(a, b)
to get a solution to ax + by = c.

Exercise 5

Find integers x and y such that 427x + 616y = 91.

Exercise 6

Find integers x and y such that 427x + 616y = 101.
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