
Problem of the Month
Problem 0: September 2023

In this problem, f will always be a function defined by f(r) =
ar + b

cr + d
where a, b, c, and d are

integers. These integers will vary throughout the parts of the problem.

Given such a function f and a rational number r1, we can generate a sequence r1, r2, r3, . . . by
taking rn = f(rn−1) for each n ≥ 2. That is, r2 = f(r1), r3 = f(r2), r4 = f(r3), and so on. Unless
there is some point in the sequence where f(rn−1) is undefined, a sequence of this form can be
made arbitrarily long.

These sequences behave in different ways depending on the function f and the starting value r1.
This problem explores some those behaviours.

(a) Suppose f(r) =
2r − 1

r + 2
.

(i) With r1 = 3
2
, compute r2, r3, and r4.

(ii) Find a rational number r1 with the property that r2 is defined, but r3 is not defined.

(b) Suppose f(r) =
r + 3

2r − 1
.

(i) With r1 = 3
7
, compute r2, r3, r4, and r5.

(ii) Determine all rational values of r1 with the property that there is some integer n ≥ 1
for which f(rn) is undefined. For all other values of r1, find simplified formulas for r2023
and r2024 in terms of r1.

(c) Suppose f(r) =
r + 2

r + 1
.

(i) With r1 = 1, compute r2 through r9. Write down decimal approximations of r2 through
r9 (after computing them exactly).

(ii) Suppose r is a positive rational number. Prove that∣∣∣∣∣f(r)−
√

2

r −
√

2

∣∣∣∣∣ =

∣∣∣∣∣1−
√

2

r + 1

∣∣∣∣∣
(iii) Suppose r1 is a positive rational number. Prove that

∣∣rn −√2
∣∣ < 1

2n−1

∣∣r1 −√2
∣∣ for

each n ≥ 2. Use this result to convince yourself that as n gets large, rn gets close to√
2, regardless of the choice of the positive value r1. Can you modify f slightly so that

the sequence always approaches
√

3?

(d) Explore the behaviour of the sequences generated by various values of r1 for each of the
functions below. Detailed solutions will not be provided, but a brief discussion will.

f(r) =
r − 3

r − 2
, f(r) =

r − 1

5r + 3
, f(r) =

r − 1

r + 2
, f(r) =

2r + 2

3r + 3
, f(r) =

r + 1

r − 2



Problem of the Month
Problem 0: September 2023

Hint

(a) f(r) is undefined only when r = −2. For what value of r is f(r) = −2?

(b) The sequence in part (i) is periodic. Can you show that the sequence is periodic for other
values of r1?

(c) (ii) After substituting the expression for f(r), multiply the numerator and denominator by
r + 1. Try to find a common factor in the numerator and denominator.

(iii) Use (ii) and the fact that when r is positive,

∣∣∣∣∣1−
√

2

r + 1

∣∣∣∣∣ < 1
2
. Try to establish the given

inequality for a few small values of n and observe how knowing the inequality for n can
help you to deduce it for n + 1.

(d) Three of these sequences are periodic, one of them is constant (after the first term), and one

of them always approaches the fixed value
3−
√

13

2
as long as there are no undefined values

in the sequence.



Problem of the Month
Solution to Problem 0: September 2023

(a) (i)

r2 = f(r1) =
2r1 − 1

r1 + 2

=
2
(
3
2

)
− 1

3
2

+ 2

=
4

7

r3 = f(r2) =
2
(
4
7

)
− 1

4
7

+ 2

=
1

18

r4 = f(r3) =
2
(

1
18

)
− 1

1
18

+ 2

= −16

37

(ii) Observe that f(r) is only undefined when r = −2, so to choose r1 so that r3 = f(r2)
is undefined, we need r2 = −2. Therefore, r2 = f(r1) = −2, which gives rise to the

equation
2r1 − 1

r1 + 2
= −2. Multiplying both sides by r1 + 2 gives 2r1 − 1 = −2(r1 + 2),

which can be rearranged to get 4r1 = −3, so r1 = −3
4
. Indeed, if r1 = −3

4
, then

r2 = −2 and r3 is undefined.

(b) (i)

r2 = f(r1) =
3
7

+ 3

2
(
3
7

)
− 1

= −24.

r3 = f(r2) =
−24 + 3

2(−24)− 1

=
−21

−49

=
3

7
= r1

We have that r3 = r1, so this means r4 = f(r3) = f(r1) = r2, and using these facts,
r5 = f(r4) = f(r2) = r3 = r1. This will continue to get that rn = 3

7
when n is odd

and rn = −24 when n is even.
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(ii) First observe that f(r) is undefined only when 2r − 1 = 0, or r = 1
2
. Therefore, if

r1 = 1
2
, then r2 = f(r1) is undefined.

Now suppose f(r) = 1
2
. Then

r + 3

2r − 1
= 1

2
, which can be rearranged to get the equation

2r+6 = 2r−1. This equation implies 6 = −1, which is nonsense, and so we conclude
that there is no r such that f(r) = 1

2
.

The only way that the sequence can fail to be defined somewhere is if rn = 1
2

for some
n. This happens if r1 = 1

2
, but since 1

2
is never the output of f , it is not possible

that rn = 1
2

unless n = 1. Therefore, r1 = 1
2

is the only starting value for which the
sequence is undefined somewhere.

Assuming r 6= 1
2
, we will now compute a general expression for f(f(r)). Since

r 6= 1
2

and f(r) 6= 1
2

regardless of r, there will be no issues with the expression
being undefined.

f(f(r)) =
r+3
2r−1

+ 3

2
(

r+3
2r−1

)
− 1

=
r + 3 + 3(2r − 1)

2(r + 3)− (2r − 1)
(multiply through by 2r − 1)

=
7r

7
= r

and so we have that f(f(r)) = r for all r 6= 1
2
. We can use this equation to get

r3 = f(r2) = f(f(r1)) = r1. Next, we can compute r5 = f(r4) = f(f(r3)) = r3 = r1.
Continuing, we see that rn = r1 for all odd n. Similarly, r4 = f(r3) = f(f(r2)) = r2,

and we can continue with this reasoning to get that rn = f(r1) = r2 =
r1 + 3

2r1 − 1
for all

even n.

To answer the given question, since 2023 is odd, r2023 = r1 and since 2024 is even,

r2024 =
r1 + 3

2r1 − 1
.

(c) (i) The values along with their decimal approximations are in the table below.

r1 1 1

r2
3
2

1.5

r3
7
5

1.4

r4
17
12

1.416667

r5
41
29

1.413793

r6
99
70

1.414286

r7
239
169

1.414201

r8
577
408

1.414216

r9
1393
985

1.414213
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(ii) We will work with the quantity
f(r)−

√
2

r −
√

2
and worry about the absolute value later.

f(r)−
√

2

r −
√

2
=

r+2
r+1
−
√

2

r −
√

2

=
r + 2−

√
2(r + 1)

(r + 1)(r −
√

2)
(multiply through by r + 1)

=
r −
√

2 + 2−
√

2r

(r + 1)(r −
√

2)

=
r −
√

2−
√

2(r −
√

2)

(r + 1)(r −
√

2)

=
(r −

√
2)(1−

√
2)

(r + 1)(r −
√

2)

=
1−
√

2

r + 1
(cancel r −

√
2)

The result now follows by taking the absolute value of both sides.

(iii) Observe that if r is positive, then f(r) =
r + 2

r + 1
is also positive since r + 2 and r + 1

are both positive. It follows that if r1 is positive, then rn is positive for all n. Since

rn > 0 for all n, rn + 1 > 1 for all n, and taking reciprocals, we get
1

rn + 1
< 1 for all

n. Since rn + 1 is positive,

∣∣∣∣ 1

rn + 1

∣∣∣∣ =
1

rn + 1
, so we actually get that

∣∣∣∣ 1

rn + 1

∣∣∣∣ < 1

for all n.

We will now show that |1 −
√

2| < 1
2

(you may already believe this to be true, but

the proof presented does not assume that we have a known approximation of
√

2).
To see this, observe that 8 < 9, and so

√
8 <

√
9 which is the same as 2

√
2 < 3.

Dividing both sides by 2, we get
√

2 < 3
2
. Subtracting 1

2
+
√

2 from both sides gives

−1
2
< 1−

√
2. Now observe that 1 < 2, so

√
1 <
√

2 or 1 <
√

2. Therefore, 1−
√

2 < 0.

We have shown that −1
2
< 1−

√
2 < 0, which implies that |1−

√
2| < 1

2
. Combining

this with

∣∣∣∣ 1

rn + 1

∣∣∣∣ < 1, we get

∣∣∣∣∣1−
√

2

rn + 1

∣∣∣∣∣ =

∣∣∣∣ 1

rn + 1

∣∣∣∣ |1−√2| < 1× 1

2
=

1

2

so

∣∣∣∣∣1−
√

2

rn + 1

∣∣∣∣∣ < 1
2
.

Since rn = f(rn−1) for all n ≥ 2, we can apply part (ii) to get∣∣∣∣∣ rn −
√

2

rn−1 −
√

2

∣∣∣∣∣ =

∣∣∣∣∣f(rn−1)−
√

2

rn−1 −
√

2

∣∣∣∣∣ =

∣∣∣∣∣ 1−
√

2

rn−1 + 1

∣∣∣∣∣ < 1

2
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where the final inequality comes from applying what we showed above.

This implies that for all n ≥ 2 we have

|rn −
√

2| < 1

2
|rn−1 −

√
2| (*)

Now let’s return to the inequality in the question, which is |rn−
√

2| < 1

2n−1
|r1−

√
2|.

When n = 2, this inequality is |r2 −
√

2| < 1
2
|r1 −

√
2|, which is exactly (∗) when

n = 2. We have already shown that (∗) is true for all n, so this means the desired
inequality is true for n = 2.

When n = 3, we can apply (∗) to get |r3−
√

2| < 1
2
|r2−

√
2|, but we have just shown

that |r2 −
√

2| < 1
2
|r1 −

√
2|. Therefore,

|r3 −
√

2| < 1

2
|r2 −

√
2| < 1

2

(
1

2
|r1 −

√
2|
)

=
1

22
|r1 −

√
2|

which shows that the desired inequality holds for n = 3.

By similar reasoning, we can use the fact that the inequality holds for n = 3 to prove
that it holds for n = 4, then we can use that it holds for n = 4 to prove that it holds
for n = 5, and so on to show that the inequality holds for all positive integers n ≥ 2.
We can formalize this using mathematical induction.

Assume that k ≥ 2 is an integer for which the inequality |rk −
√

2| < 1

2k−1
|r1 −

√
2|

is true. Using (∗) with n = k + 1, we have the following

|rk+1 −
√

2| < 1

2
|rk −

√
2|

and now using the inductive hypothesis, that |rk −
√

2| < 1
2k−1 |r1 −

√
2|, we get

|rk+1 −
√

2| < 1

2

(
|rk −

√
2|
)
<

1

2

(
1

2k−1
|r1 −

√
2|
)

=
1

2k
|r1 −

√
2|

but k = (k + 1)− 1, so we have shown that the inequality holds for the integer k + 1.

To summarize, we have shown that the inequality holds for n = 2, and we have shown
that if the inequality holds for an integer, then it holds for the next integer. This
shows that the inequality holds for all integers n ≥ 2.

Finally, since |r1−
√

2| is a fixed quantity, the quantity
1

2n−1
|r1−

√
2| must get closer

and closer to 0 as n gets larger and larger. We also have that |rn−
√

2| < 1

2n−1
|r1−
√

2|
for all n, which means the quantity |rn −

√
2|, which is positive, is also getting closer

and closer to 0 as n gets larger and larger. It follows that rn −
√

2 is very close to
zero for very large n, which means rn is very close to

√
2 for very large n. Keep in

mind that this is true for any positive starting value r1.
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(d) Here is a brief summary of the behaviours of the sequences.

When f(r) =
r − 3

r − 2
, the sequence will repeat with period 3 as long as at least three terms

in the sequence are defined. The only values of r1 for which the sequence has an undefined
term are r1 = 2 and r1 = 1.

When f(r) =
r − 1

5r + 3
, the sequence will repeat with period 4 as long as at least four terms

are defined. The only values of r1 for which the sequence has an undefined term are
r1 = −3

5
, r1 = −1

5
, and r1 = 1

5
.

When f(r) =
r − 1

r + 2
, the sequence will repeat with period 6 as long as at least six terms are

defined. The only values of r1 for which the sequence has an undefined term are r1 = −2,
r1 = −1, r1 = −1

2
, r1 = 0, and r1 = 1.

When f(r) =
2r + 2

3r + 3
, the sequence is undefined after r1 if r1 = −1. Otherwise, the

sequence has rn = 2
3

for all n ≥ 2, regardless of the value of r1.

Note: These examples, together with the one in part (b), show that the sequences can be
periodic with period 1, 2, 3, 4, or 6. Do you think that any other periods are possible?

When f(r) =
r + 1

r − 2
, the sequence converges to

3−
√

13

2
unless the sequence has an unde-

fined term. To get an idea of why, try solving the equation
r + 1

r − 2
= r for r (this can be

rearranged to a quadratic equation in r). There are infinitely many values of r1 for which
rn is undefined. The first few of them are

2, 5,
11

4
,
26

7
,
59

19
,
137

40
,
314

97
,
725

217
, . . .

Can you determine how these values are calculated? You might be interested in computing
decimal approximations of these values and looking for a pattern.

As a final remark, we note that not all sequences are “well-behaved” (either periodic or
approaching some value). For an example of a more chaotic sequence, try exploring the
example in part (a) a little further. Can you see any pattern at all?
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Problem of the Month
Problem 1: October 2023

Given a positive integer n, the digit sum of n is the sum of the base 10 digits of n. We will denote
the digit sum of n by D(n). For example, D(1409) = 1 + 4 + 0 + 9 = 14.

Suppose that m is a positive integer. We will call a list of consecutive positive integers

a, a+ 1, a+ 2, . . . , a+ k

an m-list if none of D(a), D(a + 1), d(a + 2), and so on up to D(a + k) is a multiple of m. For
example, the list 997, 998, 999, 1000, 1001, 1002 is a 4-list because the digit sums of the integers in
the list are 25, 26, 27, 1, 2, and 3, respectively, none of which is a multiple of 4.

This problem explores the maximum length of an m-list for a few values of m.

(a) Show that the maximum length of a 2-list is 2. To do this, you must show that there is a
2-list of length 2 and you must also show that no list of three or more consecutive positive
integers can be a 2-list.

(b) Show that the maximum length of a 7-list is 12.

(c) Determine the maximum length of a 9-list.

(d) Determine the maximum length of an 11-list.



Problem of the Month
Problem 1: October 2023

Hint

For an integer a, think about how D(a) and D(a+ 1) compare to each other. The relationship is
most interesting when a+ 1 is a multiple of 10.

Our solution will make use of some basic properties of remainders. For positive integers a and b,
the remainder when dividing a by b can be found by first determining qb, the greatest multiple
of b with qb ≤ a, then computing the remainder as r = a − qb. The integer q can be found by

computing
a

b
and rounding down. For example, the remainder when dividing 38 by 5 is 3 because

35 is the greatest multiple of 5 that does not exceed 38 (in this case, q = 7), and so the remainder
is 38− 35 = 3. We assume this idea is familiar, but here are a couple of things to think about and
keep in mind.

• For integers a and b with b > 0, the remainder, r, when dividing a by b satisfies 0 ≤ r < b.

• For a fixed positive integer b, the remainders when dividing the positive integers 1, 2, 3, 4, 5, . . .
cycle through the integers 1, 2, 3, . . . , b− 2, b− 1, 0 repeatedly in that order. Importantly, if
we think of 0 as coming “after” b−1, the remainders for consecutive integers are consecutive.

• The remainder when dividing a by b is 0 exactly when a is a multiple of b.

If you have seen modular arithmetic before, it could be useful in writing a solution. Our solution
will not use modular arithmetic, but we suggest reading about it anyway since it is quite useful.

Below are some specific hints for the given questions.

(a) Show that if D(a) and D(a+ 1) are both odd, then a+ 1 is a multiple of 10.

(b) First, try to find the maximum length of a 7-list that does not contain a multiple of 10. For
an integer a, how do the remainders when D(a) and D(a+1) are divided by 7 relate to each
other?

(c) By a rather famous divisibility rule, a positive integer is a multiple of 9 if and only if the
sum of its digits is a multiple of 9.

(d) First show that an 11-list that starts with a multiple of 10 has length at most 29. Think
about the remainders when D(a) and D(a+ 1) are divided by 11.



Problem of the Month
Solution to Problem 1: October 2023

Before presenting solutions to the various parts of this question, we present a few general facts
that will be used throughout the solutions. As well, we will often denote a list of integers enclosed
in brackets. For example, we might write [1, 2, 3, 4, 5] instead of 1, 2, 3, 4, 5. This is to emphasize
when we want to think of a list is a single object to which we can refer.

Fact 1: If n is a positive integer with units digit different from 9, then D(n+ 1) = D(n) + 1.

Proof. Suppose that n is a k-digit positive integer with digits A1, A2, . . . , Ak−1, Ak, when read
from left to right. That is, n is A1A2 · · ·Ak−1Ak. Then D(n) = A1 + A2 + · · · + Ak−1 + Ak.
Since Ak ̸= 9, no “carry” occurs when adding 1 to n. In other words, n + 1 is a k-digit
positive integer with digits A1, A2, . . . , Ak−1, Ak + 1 when read from left to right. Therefore,
D(n+1) = A1 +A2 + · · ·+Ak−1 + (Ak +1) = (A1 +A2 + · · ·+Ak−1 +Ak) + 1 = D(n) + 1.

Fact 2: Suppose that L = [n, n+1, n+2, . . . , n+k] is a list of consecutive non-negative integers.
If none of n+1, n+2, . . . , n+k is a multiple of 10, then the integers D(n), D(n+1), . . . , D(n+k)
are consecutive.

Proof. None of n, n + 1, . . . , n + k − 1 has a units digit of 9. This is because the alternative
would imply that one of n+ 1, n+ 2, . . . , n+ k has a units digit of 0 and so is a multiple of 10.
Therefore, we can repeatedly apply Fact 1 to get that D(n+1) is one more than D(n), D(n+2)
is one more than D(n+ 1), and so on up to D(n+ k) is one more than D(n+ k − 1).

Fact 3: Suppose m is an integer with m > 1 and that [a, a+1, a+2, . . . , a+(m− 2)] is a list of
m− 1 consecutive integers with the property that no integer in the list is a multiple of m. Then
the remainder after a is divided by m is 1 and the remainder after a+m− 2 is divided by m is
m− 1.

Proof. In the hint, it was stated that the remainders after dividing the positive integers
1, 2, 3, 4, 5, . . . by m are

1, 2, 3, . . . ,m− 2,m− 1, 0, 1, 2, 3, . . . ,m− 2,m− 1, 0, 1, 2, . . .

That is, the remainders cycle through the values 1, 2, 3, . . . ,m− 2,m− 1, 0 in that order.

Consider the list [a, a + 1, a + 2, . . . , a + (m − 2)]. Since none of the m − 1 integers in this list
are multiples of m, none of the remainders after dividing by m can be 0, so the remainders must
be 1, 2, 3, . . . ,m − 2,m − 1 in that order. In particular, the remainder after dividing a by m is
1 and the remainder after dividing a+ (m− 2) by m is m− 1.

For a positive integer n with units digit d, we say that n has k trailing ds if the rightmost k
digits of n are d but the rightmost k + 1 digits are not equal to d. For example, the integer 123
has one trailing 3, 45000 has three trailing 0s, and 29199 has two trailing 9s.

1



By Fact 1, it is “usually” easy to predict D(n + 1) from D(n) since if the units digit of n
is not 9, then D(n + 1) = D(n) + 1. However, if the units digit of n is 9, then adding 1
causes a carry to happen, so the digit sum can go down. For example, the digit sum of 2499 is
D(2499) = 2+4+9+9 = 24, but the digit sum of 2499+1 = 2500 is D(2500) = 2+5+0+0 = 7.
Fact 4 establishes a relationship between D(n) and D(n+ 1) when n has a units digit of 9.

Fact 4: Suppose n is a positive integer with t trailing 9s. Then D(n+ 1)−D(n) = 1− 9t.

Proof. Suppose n has t trailing 9s, which means we can assume that n takes the form
n = A1A2A3 · · ·Ar−1Ar99 · · · 99 where the Ai are the first r digits and Ar ̸= 9. Since Ar is
a digit that is not 9, it must be less than 9. Therefore, when we add 1 to n, the first r − 1
digits do not change, the rth digit increases by 1, and all of the trailing 9s become trailing 0s.
In symbols, n+ 1 is the integer A1A2 · · ·Ar−1(Ar + 1)00 · · · 00.

Computing digit sums, D(n) = A1+A2+· · ·+Ar+9t andD(n+1) = A1+A2+· · ·+Ar−1+(Ar+1).
Subtracting, we get cancellation of A1 through Ar and are left with D(n+1)−D(n) = 1−9t.

Remark: We will repeatedly use the observation that if L = [a, a + 1, a + 2, . . . , a + k] is an
m-list for some m, then every sublist of L is also an m-list. One important consequence of this
fact is that if we can show that there does not exist an m-list of length k, then we can conclude
that there is no m-list that is longer than k. Thus, in general, if we want to prove that k is the
maximum length of an m-list, it suffices to do the following:

• Produce an example of an m-list of length k.

• Show that there does not exist an m-list of length k + 1.

(a) The list [9, 10] has D(9) = 9 and D(10) = 1, both of which are odd. Therefore, [9, 10]
is a 2-list of length 2. We will now show that a list of three consecutive positive integers
cannot be a 2-list.

Suppose a is a positive integer with the property that D(a) and D(a + 1) are both odd.
Since D(a) is odd, D(a) + 1 is even. We are assuming that D(a + 1) is odd, and since
D(a) + 1 is even, we conclude that D(a+ 1) ̸= D(a) + 1.

By Fact 1, the units digit of a must be 9 (otherwise D(a + 1) = D(a) + 1), so the units
digit of a+ 1 is 0. Again by Fact 1, D(a+ 2) = D(a+ 1) + 1, and since D(a+ 1) is odd,
D(a+ 1) + 1 = D(a+ 2) is even.

Now consider the list [a, a+ 1, a+ 2]. If D(a) and D(a+ 1) are both odd, we have shown
that D(a+ 2) is even. This means it is impossible for D(a), D(a+ 1), and D(a+ 2) to all
be odd, so we conclude that a 2-list of length 3 cannot exist.

(b) The arguments presented in this part and in part (d) rely on examining the location of
multiples of 10 in lists of consecutive integers. For this part, because of Fact 2, seven
consecutive integers will have seven consecutive digit sums unless a multiple of 10 causes
a carry. To build a 7-list of length more than six, there needs to be a multiple of 10
somewhere in the middle to avoid ever having seven consecutive digit sums. You might be
able to guess from this that the maximum length should be around 12.

Suppose L = [a, a+ 1, a+ 2, . . . , a+ 12] is an arbitrary list of 13 consecutive non-negative
integers. We will show that L cannot be a 7-list and this will show that a 7-list cannot
have length 13.
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Since L contains 13 consecutive integers, it must contain at least one multiple of 10. Thus,
there must be some k with 0 ≤ k ≤ 12 such that a+ k is a multiple of 10.

Case 1: 0 ≤ k ≤ 6.

Since k ≤ 6, a+ k + 6 ≤ a+ 12. The list L contains the integers a through a+ 12, so we
conclude that the seven integers a+ k, a+ k + 1, . . . , a+ k + 6 are all in L. Moreover, the
smallest multiple of 10 after a+k is a+k+10, so none of a+k+1, a+k+2, . . . , a+k+6
is a multiple of 10 since they are all strictly between two consecutive multiples of 10.

By Fact 2, the integers D(a+ k), D(a+ k + 1), . . . , D(a+ k + 6) are consecutive. Any list
of seven consecutive integers must contain a multiple of 7, so we conclude that L is not a
7-list.

Case 2: 7 ≤ k ≤ 12.

Since 7 ≤ k, a + 7 ≤ a + k which can be rearranged to get a ≤ a + k − 7. By similar
reasoning to the beginning of Case 1, the seven integers a+ k− 7, a+ k− 6, . . . , a+ k− 1
are all in L. As well, they are strictly between a+ k− 10 and a+ k, which are consecutive
multiples of 10. Therefore, none of a+ k − 7, a+ k − 6, . . . , a+ k − 1 is a multiple of 10.

By Fact 2, D(a + k − 7), D(a + k − 6), . . . , D(a + k − 1) are consecutive, so one of them
must be a multiple of 7. Therefore, L is not a 7-list.

Cases 1 and 2 address all possibilities for the location of a multiple of 10 in L. In both
cases, L is not a 7-list. We conclude that a list of 13 consecutive non-negative integers
cannot be a 7-list.

To help find a 7-list of length 12, we can modify the reasoning above slightly. To that
end, suppose M = [a, a + 1, a + 2, . . . , a + 11] is a 7-list. In the previous paragraphs, we
essentially used the fact that if seven consecutive non-negative integers do not include a
multiple of 10, then one of their digit sums must be a multiple of 7. Therefore, for M to
be a 7-list, every sublist of seven-consecutive integers must contain a multiple of 10. We
leave it to the reader to verify that this forces a+ 6 to be a multiple of 10.

Since a + 6 is a multiple of 10, the closest multiples of 10 to a + 6 are a − 4 and a + 16.
Therefore, the list a, a+1, . . . , a+5 does not contain a multiple of 10, and the only multiple
of 10 in the list a+ 6, a+ 7, . . . , a+ 11 is a+ 6. By Fact 2,

D(a), D(a+ 1), D(a+ 2), D(a+ 3), D(a+ 4), D(a+ 5)

and
D(a+ 6), D(a+ 7), D(a+ 8), D(a+ 9), D(a+ 10), D(a+ 11)

are lists of six consecutive integers. We are assuming M is a 7-list, so no integer in either
of these lists is a multiple of 7. By Fact 3, the remainder after dividing D(a + 5) by 7 is
7− 1 = 6. Also by Fact 3, the remainder after dividing D(a+ 6) by 7 is 1.

To summarize, if M = [a, a+ 1, . . . , a+ 11] is a 7-list, then the following must be true.

• a+ 6 is a multiple of 10.

• The remainder after dividing D(a+ 5) by 7 is 6.

• The remainder after dividing D(a+ 6) by 7 is 1.
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The first condition implies that a + 5 has a units digit of 9, so suppose that n + 5 has t
trailing 9s. By Fact 4, D(n + 6) − D(n + 5) = 1 − 9t. The second two conditions imply
that there are integers m and n such that D(a + 5) = 7n + 6 and D(a + 6) = 7m + 1.
Substituting into D(a + 6) −D(a + 5) = 1 − 9t, we obtain (7n + 1) − (7m + 6) = 1 − 9t
which can be rearranged to get 2t−6 = 7(m−n− t). We know that t is a positive integer,
and this shows that 2t − 6 must be a multiple of 7. The smallest positive integer t with
the property that 2t− 6 is a multiple of 7 is t = 3 since 2(3)− 6 = 0, which is a multiple
of 7.

We are looking for an integer a such that a+5 ends in three 9s and has the property that
D(n+ 5) is six more than a multiple of 7. Thus, a+ 5 will have the form x999 where x is
some string of digits. In fact, D(999) = 9 + 9 + 9 = 27 has a remainder of 6 when divided
by 7, so we set a+ 5 = 999 or a = 994. Indeed, if we set

M = [994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005]

the digit sums of the integers in M are 22, 23, 24, 25, 26, 27, 1, 2, 3, 4, 5, 6, none of which is
a multiple of 7. Therefore, M is a 7-list of length 12.

This is actually the earliest 7-list of length 12. Others can be found by prepending digits to
994 in such a way that the number of trailing 9s of a+5 does not change, and the remainder
after dividing the digit sum by 7 does not change. This can be done by prepending any
digits that have a sum that is a multiple of 7, provided the rightmost new digit is not a 9.

For example, we could take a to be 7994, 16994, 25994, 662994, and so on.

(c) Following the reasoning from (b), one might think that we can find a 9-list of length 8+8 =
16. Specifically, we might expect that we can find a list of the form [a, a + 1, . . . , a + 15]
where a + 8 is a multiple of 10 so that there are never nine consecutive integers without
a multiple of 10. In fact, the maximum length of a 9-list is eight, so the approach in part
(b) cannot be applied here. You might like to try to follow the reasoning from part (b)
through to see exactly what goes wrong. The proof given here uses the well-known fact
that a positive integer n is a multiple of 9 if and only if D(n) is a multiple of 9.

A list of nine consecutive integers must contain a multiple of 9, so it must contain an integer
whose digit sum is a multiple of 9. Therefore, a list of 9 consecutive integers cannot be a
9-list.

Any list of eight consecutive integers, none of which is a multiple of 9, must be a 9-list
since none of the digit sums are multiples of 9. An example of a 9-list of length 8 is
[1, 2, 3, 4, 5, 6, 7, 8].

(d) It might come as a surprise, but the maximum length of an 11-list is 38.

To get an idea of how one might guess this, we will first determine the maximum length
of an 11-list that starts with a multiple of 10.

Suppose L = [a, a + 1, a + 2, . . . , a + 19] is an 11-list of length 20 with the property that
a is a multiple of 10. By Fact 2, D(a), D(a + 1), . . . , D(a + 9) and D(a + 10), D(a +
11), . . . , D(a + 19) are lists of ten consecutive integers. Since we are assuming that L is
an 11-list, no integer in either of these lists is a multiple of 11. Therefore, by Fact 3, the
remainder after D(a+9) is divided by 11 is 10 and the remainder after D(a+10) is divided
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by 11 is 1. This implies the existence of integers m and n such that D(a+ 9) = 11m+ 10
and D(a+ 10) = 11n+ 1.

Since a is a multiple of 10, the units digit of a + 9 is 9. Suppose a + 9 has t trailing
9s. By Fact 4, D(a + 10) − D(a + 9) = 1 − 9t. Substituting D(a + 9) = 11m + 10 and
D(a+ 10) = 11n+ 1 into this equation, we get

(11n+ 1)− (11m+ 10) = 1− 9t

which can be rearranged to get 9t = 11(m − n) + 10. This means t is a positive integer
with the property that 9t is ten more than a multiple of 11. It can be checked that t = 6
is the smallest positive integer with this property.

We have shown the following: if [a, a+ 1, a+ 2, . . . , a+ 19] is an 11-list of length 20 with
the property that a is a multiple of 10, then a+ 9 has at least six trailing 9s. We can use
this fact to prove the following:

(i) An 11-list that starts with a multiple of 10 cannot have length 30.

(ii) An 11-list cannot have length 39.

To prove (i), assume that L = [a, a+1, a+2, . . . , a+29] is an 11-list of length 30 and that
a is a multiple of 10. We will show that this implies something that is plainly false, which
will allow us to conclude that such an 11-list cannot exist.

The fact that L is an 11-list implies that the lists M = [a, a + 1, . . . , a + 19] and
N = [a + 10, a + 11, . . . , a + 29] are both 11-lists. Moreover, a is a multiple of 10, so
a+ 10 is a multiple of 10. Thus, M and N are both 11-lists of length 20 that start with a
multiple of 10. By what was established earlier, both a+ 9 and a+ 10 + 9 = a+ 19 have
at least six trailing 9s.

The difference between two integers with at least six trailing 9s must have at least six
trailing 0s. However, (a+ 19)− (a+ 9) = 10 has only one trailing 0. We have shown that
if an 11-list starts with a multiple of 10 and has length 30, then 10 has at least six trailing
0s. Since 10 has only one trailing 0, ,we conclude that it must be impossible for an 11-list
to have length 30 and start with a multiple of 10. Note: The technique just used is known
as a proof by contradiction.

To prove (ii), we can apply (i). Suppose L = [a, a + 1, a + 2, . . . , a + 38] is a list of
39 consecutive positive integers. Among the first ten integers in L, there must be a
multiple of 10. Suppose k is an integer with 0 ≤ k ≤ 9 such that a + k is a mul-
tiple of 10. Observe that a + k + 29 ≤ a + 9 + 29 = a + 38, which means the list
M = [a+ k, a+ k+1, . . . , a+ k+29] is completely contained in L. The list M has length
30 and starts with a multiple of 10, so it cannot be an 11-list by (i). Since L contains a
sub-list that is not an 11-list, it cannot be an 11-list. Therefore, an 11-list cannot have
length 39.

We can now use what we have done to find an 11-list of length 38. Suppose that
L = [a, a + 1, a + 2, . . . , a + 37] is an 11-list. There must be an integer k with 0 ≤ k ≤ 9
such that a + k is a multiple of 10. If 0 ≤ k ≤ 8, then a + k + 29 ≤ a + 37, so
[a + k, a + k + 1, . . . , a + k + 29] is entirely contained in L. This would imply the ex-
istence of an 11-list of length 30 that starts with a multiple of 10, which is impossible by
(i). Since 0 ≤ k ≤ 8 is impossible, we conclude that k = 9.
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We assumed that L = [a, a + 1, a + 2, . . . , a + 37] was an 11-list and deduced that a + 9
is a multiple of 10. The list [a + 9, a + 10, . . . , a + 28] is completely contained in L, has
length 20, and starts with a multiple of 10. Therefore, from the argument at the beginning
of the solution to this part, a + 9 + 9 = a + 18 has at least six trailing 9s. As well, Since
a + 9 is a multiple of 10, we can apply Fact 2 to a + 9, a + 10, . . . , a + 18 to get that
D(a+9), D(a+10), . . . , D(a+18) is a list of 10 consecutive integers. Since L is an 11-list,
none of them is a multiple of 11. By Fact 3, the remainder after D(a + 18) is divided by
11 is 10.

Therefore, we will look for an integer a with the property that a + 18 has 6 trailing 9s
and D(a + 18) is 10 more than a multiple of 11. The integer 999999 has D(999999) = 54
which is 10 more than a multiple of 11, so we guess that a+ 18 = 999999, or a = 999981.
It can be checked that the list [999981, 999982, . . . , 1000018] is an 11-list of length 38. It
also follows from our reasoning that this is the first such 11-list.
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Problem of the Month
Problem 2: November 2023

This month’s problem is based on the following general question: If you draw a “loop” in the
Cartesian plane, is it always possible to find four points on that loop that are the vertices of a
square? For example, the diagram below has a loop (the solid line) and a square drawn (the dashed
line) with its four vertices on the loop.

Although it is a bit informal, it should be sufficient to think of a “loop” as a curve that you
could draw by starting your pencil somewhere on a page and moving the pencil around the page
eventually ending up where it started. Such a loop could be “smooth” (like a circle), “jagged”
(like a polygon), or some combination of the two.

(a) In each of parts (i) through (v), find four points on the loop that are the vertices of a square.

(i) the circle with equation x2 + y2 = 1

(ii) the ellipse with equation
x2

a2
+

y2

b2
= 1 where a and b are fixed positive real numbers

(iii) the polygon with vertices (1, 0),
(

1
2
,
√
3
2

)
,
(
−1

2
,
√
3
2

)
, (−1, 0),

(
−1

2
,−

√
3
2

)
, and

(
1
2
,−

√
3
2

)
(iv) the boundary of the region enclosed by the parabola with equation y = −1

2
x2+

1

6
x+

16

9
and the line with equation y = x

(v) the boundary of the region enclosed by the parabolas with equations y = x2 +
2

3
x− 4

3

and y = −x2 +
2

3
x+

4

3

(b) Show that for every acute triangle there are exactly three squares whose vertices all lie on
the perimeter of the triangle.



Problem of the Month
Problem 2: November 2023

Hint

(a) (i) Because of the rotational symmetry of circles, there are lots of squares with their vertices
lying on the circle with equation x2+y2 = 1. In fact, given any point on the circle, there
is a square with that point as one of its vertices and the other three vertices somewhere
else on the circle. It might be useful for part (v) to spend some time thinking about
this.

(ii) Try looking for a square with the property that all four of its sides are parallel to either
the x-axis or the y-axis. What are the coordinates of a square centred at the origin
with its sides parallel to the axes?

(iii) It will be helpful to have an accurate sketch of the hexagon. Similar to part (ii), there
is a square with its sides parallel to the axes.

(iv) After sketching the region, it shouldn’t be hard to believe that there is a square with
one of its sides on the line with equation y = x. The opposite side will lie on a line with
the same slope.

(v) The figure has 180◦ rotational symmetry about the origin, so try looking for a square
that is centred at the origin. If such a square exists, it should also have 108◦ rotational
symmetry about the origin. Observations from part (i) might be useful when thinking
about such squares.

(b) In our solution, we found it useful to coordinatize and assume that one the sides of the the
triangle is on the x-axis in such a way that one of the vertices is at the origin.



Problem of the Month
Solution to Problem 2: November 2023

(a) (i) Because a circle has so much symmetry, there are many squares whose four vertices
all lie on the circle. For example, the points (1, 0), (0, 1), (−1, 0), and (0,−1) are the
vertices of a square and all lie on the circle with equation x2 + y2 = 1. As well, the

four points
(

1√
2
, 1√

2

)
,
(
− 1√

2
, 1√

2

)
,
(
− 1√

2
,− 1√

2

)
, and

(
1√
2
,− 1√

2

)
are the vertices of a

square and all lie on the circle.

Note: In general, if we start with a point P and rotate P repeatedly by 90◦ coun-
terclockwise about the origin, the four points obtained are always the vertices of a
square. Starting with the point with coordinates (a, b), the coordinates of the point
obtained by a rotation of 90◦ counterclockwise about the origin are (−b, a). If we ro-
tate 90◦ counterclockwise two more times, we get the points with coordinates (−a,−b)
and (b,−a). Thus, for any real numbers a and b, the points with coordinates (a, b),
(−b, a), (−a,−b), and (b,−a) are the vertices of a square. This will be useful in later
parts. In addition, if (a, b) is a point on the circle with equation x2 + y2 = 1, then
a2 + b2 = 1. Then since (±a)2 + (±b)2 = a2 + b2 = 1, the four points (a, b), (−b, a),
(−a,−b), and (b,−a), which are the vertices of a square, all lie on the circle.

(ii) Observe that the four points (a, 0), (0, b), (−a, 0), and (0,−b) are on the ellipse with

equation
x2

a2
+

y2

b2
= 1, as shown in the illustration below.

x

y

(a, 0)(−a, 0)

(0, b)

(0,−b)

Because x2 = (−x)2 and y2 = (−y)2, if (s, t) is a point on the ellipse, then (s,−t)
and (−s, t) are both on the ellipse. Therefore, the ellipse has reflective symmetry in
the x-axis and the y-axis, which is also evident from the diagram. It is reasonable to
expect there to be a square inscribed in the ellipse that also has reflective symmetry
in the two axes. The vertices of such a square should be of the form (t, t), (−t, t),
(−t,−t), and (t,−t) for some real number t ̸= 0.

Notice that the point (t, t) is on the line with equation y = x, so assuming such a
square exists, we should be able to find one of its vertices by solving the system of
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equations

y = x

x2

a2
+

y2

b2
= 1.

Substituting the first equation into the second and finding a common denominator
gives

b2x2 + a2x2

a2b2
= 1

which rearranges to give

x2 =
a2b2

a2 + b2
.

Since a and b are positive,
√
a2b2 = ab, and so we get that x =

ab√
a2 + b2

. We therefore

expect that the four points(
ab√

a2 + b2
,

ab√
a2 + b2

)
,

(
− ab√

a2 + b2
,

ab√
a2 + b2

)
(
− ab√

a2 + b2
,− ab√

a2 + b2

)
,

(
ab√

a2 + b2
,− ab√

a2 + b2

)
are all on the ellipse and are the vertices of a square. As discussed in the solution to
part (i), these points are of the form (t, t), (−t, t), (−t,−t), and (t,−t), so they are
the vertices of a square. It is an exercise to verify that they are all on the ellipse.

Below is a picture of the ellipse with a square inscribed.

x

y

Follow up question: If a = b, then the ellipse is a circle and there are infinitely
many inscribed squares. If a ̸= b, is the square in the solution above the only square
inscribed in the ellipse?

(iii) In this case, the loop is the regular hexagon pictured below.
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x

y

Similar to the situation in part (ii), the loop has reflective symmetry in both the x and
y axes. Thus, we might again guess that there is an inscribed square with reflective
symmetry in both axes. If such a square exists, then one of the vertices will have the
form (t, t). Thus, we are looking for the points (there are two of them) where the line
with equation y = x intersects the hexagon.

The line with equation y = x must intersect the part of the hexagon that is in the

first quadrant. Notice that
(

1
2
,
√
3
2

)
is above the line with equation y = x, so the

horizontal line segment in the first quadrant will not intersect the line with equation
y = x. Therefore, the intersection point we seek is on the line segment joining (1, 0)

to (1
2
,
√
3
2
), which has equation y = −

√
3x +

√
3. To find the point of intersection,

we set x = −
√
3x +

√
3 and solve to get x =

√
3

1+
√
3
. Recall that we hope the square

has vertices at (t, t), (−t, t), (−t,−t), and (t,−t). You can check that with t =
√
3

1+
√
3
,

these four points lie on the given hexagon. Below is a picture of the hexagon with
the inscribed square.

x

y

Follow up question: There are two other squares inscribed in the hexagon. They
arise from rotating the square in the solution by 60◦ clockwise or 60◦ counterclockwise
about the origin. Are these the only possible squares?

(iv) The graphs of the relations y = −1
2
x2 + 1

6
x+ 16

9
and y = x are pictured on the same

axes below. The loop, which is the boundary of the region enclosed by the two graphs,
is bold.
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x

y

One approach is to try to find a square with two adjacent vertices on the line with
equation y = x and the other two vertices on the parabola. Why should we expect
such a square even exists? Imagine drawing a line L that is parallel to the line with
equation y = x, lies above the line with equation y = x, and intersects the parabola
twice. By drawing lines with slope −1 through these two points of intersection, we
get a rectangle with two vertices on the parabola and two vertices on the line. The
diagrams below show such configurations with the rectangle shaded in each case.

x

y L

x

y

If the points of intersection of L with the parabola are far apart, as in the left diagram,
then the two sides of the rectangle that are parallel to the line y = x are longer than
the other two sides. If the points of intersection are close together, as in the right
diagram, then the two sides of the rectangle that are parallel to the line y = x
are shorter than the other two sides. It seems reasonable to guess that somewhere
in between those two extremes is a happy medium where the rectangle is a square.
Formally, this kind of argument is an application of something called the Intermediate
Value Theorem.

Let’s use this thinking to find the coordinates of such a square. Let L be the line with
equation y = x + b where b is the positive real number that will cause the rectangle
to be a square. The vertices of the square we hope for are the points of intersection
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of L with the parabola. To find these points, we set x + b equal to −1
2
x2 + 1

6
x + 16

9

and rearrange to get.

x+ b = −1

2
x2 +

1

6
x+

16

9

0 =
1

2
x2 +

5

6
x+ b− 16

9
0 = 9x2 + 15x+ (18b− 32)

where the last line is obtained by multiplying the second-last line by 18.

We can now use the quadratic formula to get

x =
−15±

√
152 − 4(9)(18b− 32)

18

=
−5±

√
52 − 4(18b− 32)

6

=
−5± 3

√
17− 8b

6

Note: Since we are assuming that the line y = x + b has two points of intersection
with the parabola, this quadratic equation must have two distinct real solutions. This
means we must have 17 − 8b > 0 and so b < 17

8
. Revisiting the diagrams, it should

be clear that there is an upper bound on the values of b that can result in the line
intersecting the parabola. The diagrams also indicate that b > 0.

Therefore, the x-coordinates of the points of intersection are
−5− 3

√
17− 8b

6
and

−5 + 3
√
17− 8b

6
.

The difference between the x-coordinates of these points is

−5 + 3
√
17− 8b

6
− −5− 3

√
17− 8b

6
=

√
17− 8b

and since the points are on a line of slope 1, the distance between the y-coordinates
is also

√
17− 8b. Therefore, the distance between the two points is√(√

17− 8b
)2

+
(√

17− 8b
)2

=
√

2(17− 8b)

=
√
34− 16b

We will leave it as an exercise to show that the perpendicular distance between L

and the line with equation y = x is equal to
b√
2
. This means our square has sides

of length
√
34− 16b and

b√
2
. A square has four equal sides, so this implies the

equation
√
34− 16b =

b√
2
. Squaring both sides, we have 34 − 16b =

b2

2
which can
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be rearranged to get b2 + 32b − 68 = 0. Factoring gives (b − 2)(b + 34) = 0, so the
possible values of b are 2 and −34.

Since we need b to be positive, we conclude that b = 2, so the line L has equation
y = x+2. The x-coordinates of the points of intersection of L with the parabola were
computed earlier. Substituting b = 2 into these expressions, we get x-coordinates of
−5− 3

√
17− 8b

6
= −4

3
and

−5 + 3
√
17− 8b

6
= −1

3
. These points lie on the line with

equation y = x+2, so the coordinates of two of the vertices of the square are
(
−4

3
, 2
3

)
and

(
−1

3
, 5
3

)
.

To find the other two vertices, we can find the equations of the lines of slope −1
through each of these points, then find their intersection points with the line with
equation y = x. We will not include the calculations here, but the resulting points
are

(
−1

3
,−1

3

)
and

(
2
3
, 2
3

)
.

Indeed, it is not difficult to check that the points(
−4

3
,
2

3

)
,

(
−1

3
,−1

3

)
,

(
2

3
,
2

3

)
,

(
−1

3
,
5

3

)
are the vertices of a square. Below is a plot of the loop along with the square with
these four points as its vertices.

x

y

(v) The two parabolas are pictured below. The loop is bold.

x

y
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By the discussion at the end of the solution to part (i), the four points(
1,

1

3

)
,

(
−1

3
, 1

)
,

(
−1,−1

3

)
,

(
1

3
,−1

)
.

are the vertices of a square. Furthermore, you can check that these four points all lie
on the loop.

For the rest of the solution to this part, we will show how one might find these four
points. The task is a bit trickier here because, unlike in earlier parts, it is not easy
to guess what the slope of the sides of the square should be. However, there is still
some symmetry that we can use. Specifically, the loop has 180◦ rotational symmetry
about the origin because the two parabolas are each the result of rotating the other
180◦ about the origin. This is not difficult to believe from the diagram, but it can
also be verified algebraically.

This symmetry suggests two things. The first is that we should look for a square that
has 180◦ rotational symmetry about the origin. The second is that each of the two
parabolas should contain two vertices of the square.

A square that has 180◦ rotational symmetry about the origin must also have 90◦

rotational symmetry about the origin (you might want to take some time to convince
yourself of this). Again by the discussion from part (i), the vertices of the square
should be at the points with coordinates (a, b), (−b, a), (−a,−b), and (b,−a) where
a and b are some real numbers.

The parabola with equation y = x2+ 2
3
x− 4

3
should contain two vertices of the square

with the property that one of these vertices is the result of rotating the other vertex
90◦ about the origin. Thus, for some a and b, this parabola should contain the points
(a, b) and (−b, a). This implies the following two equations in a and b:

b = a2 +
2

3
a− 4

3

a = (−b)2 +
2

3
(−b)− 4

3

The second equation gives an expression for a in terms of b, so we can substitute this
expression into the first equation and simplify as follows:

b =

(
(−b)2 +

2

3
(−b)− 4

3

)2

+
2

3

(
(−b)2 +

2

3
(−b)− 4

3

)
− 4

3

=

(
b2 − 2

3
b− 4

3

)2

+
2

3

(
b2 − 2

3
b− 4

3

)
− 4

3

9b = (3b2 − 2b− 4)2 + 2(3b2 − 2b− 4)− 12 (multiply by 9)

9b = 9b4 − 12b3 − 14b2 + 12b− 4

0 = 9b4 − 12b3 − 14b2 + 3b− 4

In general, we should not expect to easily find a closed expression for the root of a
quartic polynomial. However, this question was designed to work out nicely. After
some checking, you might notice that b = −1 is a root of this equation. Indeed,
9(−1)4 − 12(−1)3 − 14(−1)2 + 3(−1)− 4 = 0. We could factor to get

0 = (b+ 1)(9b3 − 21b2 + 7b− 4)

7



but b = −1 is the value we seek, so the other roots of the quartic are not of any
use in this solution (though you might want to think about whether they have any
“geometric” meaning). With b = −1, the equation a = (−b)2 + 2

3
(−b) − 4

3
implies

a = 1
3
, so one of the points is (−b, a) =

(
1, 1

3

)
. This is the first of the four points

listed at the start of the solution to this part. Rotating the point
(
1, 1

3

)
by 90◦, 180◦,

and 270◦ about the origin gives the other three points. You can check that each of
the two parabolas contains two of these points. Below is a diagram of the loop with
the square included.

x

y

(b) Given △ABC, there exists △DEF so that △ABC is similar to △DEF and DE is hor-
izontal with length 1. So we proceed by examining such a triangle △DEF with vertices
D(0, 0), E(1, 0), and F (a, b) where a > 0 and b > 0. Moreover, if △ABC is acute, then so
is △DEF and we must have 0 < a < 1.

We will show that there is a unique square whose vertices are on the perimeter of △DEF
with two of its vertices are on DE. To find such a square, we will assume there is such a
square, deduce conditions on the location of the vertices of such a square, and then confirm
that the four points we find actually satisfy the given conditions.

Suppose W , X, Y , Z are the vertices of the square, with W and X on DE. The diagram
below shows what this picture should look like.

x

y

W X

Z Y

F (a, b)

E(1, 0)D

The equations of the lines joining (0, 0) to (a, b) and (1, 0) to (a, b) are y =
b

a
x and

y =
b

a− 1
(x− 1) respectively.

8



The coordinates of W , X, Y , and Z must then take the form

W = (s, 0)

X = (t, 0)

Y =

(
t,

b

a− 1
(t− 1)

)
Z =

(
s,

b

a
s

)
for some s and t with 0 < s < t < 1. Since we want these to be the vertices of a square,
we have the following pair of simultaneous equations:

b

a
s =

b

a− 1
(t− 1)

t− s =
b

a
s.

The first equation comes from insisting that the line joining Y to Z is horizontal, and the
second comes from insisting that the width of the resulting rectangle is equal to its height.
Rearranging the second equation gives t = ( b

a
+ 1)s and substituting this into the first

equation gives
b

a
s =

b

a− 1

((
b

a
+ 1

)
s − 1

)
.

Solving for s gives

s =
a

b+ 1

and therefore

t =
b+ a

b+ 1
.

Therefore, if such a square exists, it must have vertices

W =

(
a

b+ 1
, 0

)
X =

(
b+ a

b+ 1
, 0

)
Y =

(
b+ a

b+ 1
,

b

b+ 1

)
Z =

(
a

b+ 1
,

b

b+ 1

)
.

We leave it as an exercise to show that these four vertices indeed are the vertices of a
square and that they are all on the perimeter of the triangle. Since the assumption that
they were the vertices of a square led to specific coordinates of the four points, we can also
conclude that there is exactly one square with vertices on △DEF so that two of them are
on DE.

By the argument above, in △DEF , there is always exactly one square with two vertices
on DE and one vertex on each of DF and EF . In △ABC, this corresponds to exactly

9



one square with two vertices on AB and one on each of AC and BC. Since there are three
sides in △ABC, there are exactly three squares.

Note that if △ABC is obtuse, then the preceding arguments can be modified to show that
there is exactly one square with vertices on the perimeter of △ABC. Two of the vertices
will always be on the longest side. What do you think happens in a right-angled triangle?

10



Problem of the Month
Problem 3: December 2023

This month’s problem is an extension of Problem 3 from Part B of the 2023 Canadian Intermediate
Mathematics Contest. The original problem was stated as follows:

The positive integers are written into rows so that Row n includes every integer m with the
following properties:

(i) m is a multiple of n,

(ii) m ≤ n2, and

(iii) m is not in an earlier row.

The table below shows the first six rows.

Row 1 1
Row 2 2, 4
Row 3 3, 6, 9
Row 4 8, 12, 16
Row 5 5, 10, 15, 20, 25
Row 6 18, 24, 30, 36

(a) Determine the smallest integer in Row 10.

(b) Show that, for all positive integers n ≥ 3, Row n includes each of n2 − n and n2 − 2n.

(c) Determine the largest positive integer n with the property that Row n does not include
n2 − 10n.

If you have not already done so, we suggest thinking about the parts above before proceeding.

(a) For each positive integer k, determine the largest positive integer n with the property that
Row n does not include n2 − kn. (This generalizes part (c) from the original problem.)

In the remaining questions, f(n) is defined for each n ≥ 1 to be the largest non-negative integer m
such that m ≤ n and mn is not in Row n. For example, Row 6 is 18, 24, 30, 36, so f(6) = 2 since
2× 6 = 12 is not in Row 6 but 3× 6, 4× 6, 5× 6, and 6× 6 are all in Row 6.

(b) Show that f(p) = 0 for all prime numbers p. (Looking closely at the definition of f(n),
f(p) = 0 means that every positive multiple of p from p through p2 appears in Row p.)

(c) Find an expression for f(pq) where p and q are prime numbers. Justify that the expression
is correct.

(d) Find an expression for f(pd) where p is a prime number and d is a positive integer.

(e) Take some time to explore the function f further on your own. Are there other results you
can prove about the function beyond what is done in (b), (c) and (d)? Is there a nice way
to compute f(n) in general without computing each of the first n− 1 rows?



Problem of the Month
Problem 3: December 2023

Hint

For positive integers m and n with m ≤ n, the integer mn is not in Row n if and only if there are
integers a and b with m < a ≤ b < n such that mn = ab. This fact will likely be useful in all parts
of this problem.

(a) With the above fact in mind, convince yourself that if n2 − kn is not in Row n, then there
must be positive integers x and y such that x ≤ y < k and n2 − kn = (n− x)(n− y). Now
solve for n and try to determine how to choose x and y to maximize this expression for n.

(b) If integers a, b, n, and p satisfy mp = ab and p is prime, then at least one of a and b must
be a multiple of p.

(c) The general formula is f(pq) = (p−1)(q−1). In this part and the rest of the parts, you might
find the following observation useful: If u and v are integers with u < v, then u ≤ v − 1.

(d) Consider the cases when d is even and when d is odd separately.

(e) To formulate a guess at how to find f(n) in general, consider some values of n for which you
know the value of f(n) and list the positive factors of n in increasing order. If you are so
inclined, you could write some computer code to compute f(n) for some moderately sized
values of n.

The value of f(n) depends on how n factors, so it is probably unreasonable to expect a
general algebraic expression for f(n) similar to f(pq) = (p− 1)(q− 1). Instead, try to find a
simple procedure to compute f(n) assuming that you already know all the positive factors
of n.



Problem of the Month
Solution to Problem 3: December 2023

For solutions to the original problem from the Canadian Intermediate Mathematics Contest,
please refer to the solutions on our website.

We will start by presenting two general facts. It is worth spending some time digesting them
before reading the rest of the solution.

Fact 1: For all positive integers m and n with m ≤ n, if the integer mn is not in Row n, then
there are positive integers a and b such that ab = mn and m < a ≤ b < n.

Proof. Assume that m and n are positive integers with m ≤ n such that mn is not in Row n.
Then mn must be in an earlier row since mn ≤ n2. Thus, mn is in Row b for some integer
b < n. The integers in Row b are multiples of b that are no larger than b2, which means that

mn = ab for some positive integer a with a ≤ b. Rearranging mn = ab, we get
a

m
=

n

b
. Since

b < n,
n

b
> 1, and so

a

m
> 1 which implies a > m. Therefore, there are positive integers a and

b such that mn = ab and m < a ≤ b < n.

Fact 2: For all positive integers m and n with m ≤ n, if there are positive integers a and b such
that ab = mn and m < a ≤ b < n, then the integer mn is not in Row n.

Proof. Assume that m and n are positive integers with m ≤ n and that there are positive
integers a and b with mn = ab and m < a ≤ b < n. We are assuming a ≤ b and that a and b
are positive, so ab ≤ b2, which implies mn ≤ b2 since we are assuming mn = ab. Therefore, mn
is a positive multiple of b that does not exceed b2, so mn cannot appear any later than Row b.
Since b < n, mn is not in Row n.

(a) Suppose k is a positive integer. If n is a positive integer with n ≤ k, then n2 − kn ≤ 0,
and so n2− kn is not in Row n. Therefore, we might as well assume that n > k as we look
for the largest n such that n2 − kn is not in Row n.

Assume now that n2 − kn = n(n− k) is not in Row n. By Fact 1 with m = n− k, there
must be integers a and b such that ab = n(n− k) and n− k < a ≤ b < n.

Because a and b are integers strictly between n − k and n, there must exist integers x
and y with 1 < x ≤ y < k such that a = n − y and b = n − x. We are assuming that
n2 − nk = ab, so we can substitute to get n2 − nk = (n− y)(n− x) = n2 − (x+ y)n+ xy.
This can be simplified and rearranged to get (x+ y − k)n = xy. The integers x and y are
both positive, so xy is positive, which implies that x+ y− k is positive so we can solve for

n to get n =
xy

x+ y − k
.

Now suppose x+y > k+1 and consider the expression
(x− 1)y

(x− 1) + y − k
− xy

x+ y − k
, which

1



we can simplify as follows:

(x− 1)y

(x− 1) + y − k
− xy

x+ y − k
=

(x− 1)y(x+ y − k)− (xy)(x+ y − 1− k)

(x+ y − k)(x+ y − 1− k)

=
x2y + xy2 − xyk − xy − y2 + yk − x2y − xy2 + xy + xyk

(x+ y − k)(x+ y − 1− k)

=
−y2 + yk

(x+ y − k)(x+ y − 1− k)

=
y(k − y)

(x+ y − k)(x+ y − 1− k)

Carefully considering the components of the fraction above, we have that y is a positive
integer with y < k, so the quantity k − y must be negative, and since x + y > k + 1, the
quantities x+ y− k and x+ y− k− 1 are both positive. Therefore, the fraction at the end
of the calculation above is negative, so we get that

(x− 1)y

(x− 1) + y − k
− xy

x+ y − k
< 0

which implies that
(x− 1)y

(x− 1) + y − k
<

xy

x+ y − k
.

We have shown that if x+ y > k + 1, then the quantity
xy

x+ y − k
can be made larger by

decreasing x by 1. A similar argument shows that if x+ y > k+ 1, then the quantity gets

larger when y is decreased by 1. Since n =
xy

x+ y − k
and we seek the largest possible n,

we conclude that n can always be made larger by decreasing x+ y by 1, provided x+ y is
larger than k + 1. Therefore, the maximum value of n must occur when x+ y = k + 1.

Note: It is possible (and essentially assured) that
xy

x+ y − k
is not always an integer.

However, since it is maximized when x+y = k+1, which makes the denominator equal to

1, the maximum possible value of
xy

x+ y − k
given the constraints on x and y happens to be

an integer. Therefore, the maximum possible integer value of
xy

x+ y − k
is the maximum

possible value, which occurs when x+ y = k + 1.

Substituting x + y = k + 1 into n =
xy

x+ y − k
, we get n = xy. Therefore, the task is to

maximize xy subject to the conditions 1 < x ≤ y < k and x+ y = k + 1.

Substituting y = k + 1 − x into xy, we get xy = x(k + 1 − x) = (k + 1)x − x2. Since k
is fixed, the expression (k + 1)x− x2 is a quadratic in x with a negative coefficient of x2.

Therefore, it has a maximum value and it occurs when x =
k + 1

2
.

We are looking for the maximum among integer values of x, so if
k + 1

2
is an integer, the

maximum occurs exactly when x =
k + 1

2
. Since x+y = k+1, this implies that y =

k + 1

2
as well.
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Otherwise, the maximum will occur at the integer nearest
k + 1

2
. There is a tie between

k + 1

2
− 1

2
=

k

2
and

k + 1

2
+

1

2
=

k + 2

2
. Notice that the sum of these two possible values

of x is
k

2
+

k + 2

2
= k + 1, so one of the values must be x and the other must be y. Since

x ≤ y, we have that x =
k

2
and y =

k + 2

2
.

Now to summarize what we have so far: if we assume that n2−kn is not in Row n, then n

is no larger than

(
k + 1

2

)2

when k is odd and n is no larger than
k

2

(
k + 2

2

)
=

k(k + 2)

4

when k is even. Note that when k = 10, we get
10(12)

4
= 30, which agrees with the answer

to part (c) of the original problem.

To finish the argument, we need to verify that

[(
k + 1

2

)2
]2

− k

(
k + 1

2

)2

is not in

Row

(
k + 1

2

)2

when k is odd and that

(
k(k + 2)

4

)2

−k

(
k(k + 2)

4

)
is not in Row

k(k + 2)

4
when k is even. We will only include the verification for when k is odd here. The verification
when k is even is similar.

Expanding and simplifying, we have[(
k + 1

2

)2
]2

− k

(
k + 1

2

)2

=

(
k + 1

2

)2
[(

k + 1

2

)2

− k

]

=

(
k + 1

2

)2 [
k2 + 2k + 1− 4k

4

]
=

(
k + 1

2

)2 [
k2 − 2k + 1

4

]
=

(
k2 − 1

4

)2

Now set n =

(
k + 1

2

)2

, m = n − k, and a = b =
k2 − 1

4
. It follows from the calculation

above that mn = ab. If we can show that m < a ≤ b < n, then we can apply Fact 2 to get
that mn = n2−kn is not in Row n. Note that a = b by definition, so a ≤ b is automatically

true. Expanding gives n =
k2 + 2k + 1

4
and m =

k2 − 2k + 1

4
, and it is easily checked that

m =
k2 − 2k + 1

4
<

k2 − 1

4
<

k2 + 2k + 1

4
= n

for all k > 1. This means we can apply Fact 2 as long as k > 1, which completes the

verification that the maximum value of n is exactly

(
k + 1

2

)2

when k is odd and k > 1.

Finally, if k = 1, then n2 − kn = n2 − n. By the original contest problem, n2 − n is in
Row n for n ≥ 3. Also, n2 − n is in Row n when n = 2, but when n = 1, n2 − n = 0 is

3



not in Row n. Therefore, when k = 1, the maximum value of n for which n2− kn is not in

Row n is n = 1. Notice that

(
k + 1

2

)2

evaluates to 1 when k = 1, so the formula works

even in this case.

(b) Suppose m is a positive integer with m ≤ p such that mp is not in Row p. By Fact 1,
there exist positive integers a and b such that mp = ab and m < a ≤ b < p. The equation
mp = ab implies that ab is a multiple of p, and since p is a prime number, a or b must be
a multiple of p. (This is by a fact often known as Euclid’s Lemma.) We also have that
a and b are positive and both less than p, so it is impossible for either of them to be a
multiple of p because p is prime.

We conclude that there are no positive integers m with m ≤ p such that mp is not in
Row p. In other words, mp is in Row p for every positive integer m with m ≤ p.

Since 0 is not in any row and 0 = 0×p is a multiple of p, 0 is the largest integer m with the
property that m ≤ p and mp is not in Row p. Thus, f(p) = 0 when p is a prime number.

(c) We will show that f(pq) = (p− 1)(q − 1). To do this, we need to establish two things:

• (p− 1)(q − 1)pq is not in Row pq.

• For every integer k with (p− 1)(q − 1) < k ≤ pq, the integer kpq is in Row pq.

We will assume that p ≤ q. If not, then q ≤ p and the proof is essentially identical.

To see that the first point is true, set n = pq, m = (p − 1)(q − 1), a = q(p − 1), and
b = p(q − 1) and apply Fact 2. Note that p− 1 < p so (p− 1)(q − 1) < p(q − 1) or m < a.
We also have p ≤ q, which can be rearranged to get −q ≤ −p, and so pq − q ≤ pq − p,
which can be factored to get q(p − 1) ≤ p(q − 1) or a ≤ b. Finally, q − 1 < q, so
b = p(q − 1) < pq = n. Putting these inequalities together, we have m < a ≤ b < n. Since
mn = (p − 1)(q − 1)pq = ab, the conditions of Fact 2 are satisfied and we can conclude
that (p− 1)(q − 1)pq is not in Row pq.

Now suppose k is an integer such that (p − 1)(q − 1) < k ≤ pq. We wish to show that
kpq must be in Row pq. To do this, we will assume that it is not in Row pq and deduce a
contradiction.

To that end, assume that kpq is not in Row pq. By Fact 1, there must be integers a and
b with k < a ≤ b < pq such that kpq = ab. If a is a multiple of pq, then we would have
pq ≤ a, but a < pq by assumption, so this is impossible. Therefore, a is not a multiple of
pq. Similarly, b is not a multiple of pq.

Since ab is a multiple of pq and p and q are prime, either a is a multiple of p and b is a
multiple of q, or a is a multiple of q and b is a multiple of p. We will assume that a is
a multiple of p and b is a multiple of q. The other situation is similar. This implies the
existence of integers x and y such that px = a and qy = b. Observe that since a < pq, we
must have x < q, and similarly y < p. Since x, y, p, and q are integers, we conclude that
x ≤ q − 1 and y ≤ p− 1.

Since we are assuming that kpq = ab, we have

k =
ab

pq
=

pxqy

pq
= xy ≤ (p− 1)(q − 1)
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However, we are also assuming that (p− 1)(q − 1) < k, so we can deduce that

k ≤ (p− 1)(q − 1) < k

which is impossible because it implies k < k. Therefore, our assumption that kpq is not in
Row pq must be false, and we conclude that kpq is in Row pq.

Therefore, f(pq) = (p− 1)(q − 1) as claimed earlier.

(d) The value of f(pd) depends on whether d is even or odd. If d = 2r for some integer r, then
f(pd) = (pr − 1)2. If d = 2r + 1 for some integer r, then f(pd) = (pr − 1) (pr+1 − 1).

Here we include a proof in the case where d is even. The proof when d is odd is a slight
modification of the proof given for when d is even.

Assume d = 2r for some positive integer r. As with part (c), we need to show that

• p2r (pr − 1)2 is not in Row p2r,

• and kp2r is in Row p2r for every k with (pr − 1)2 < k ≤ p2r.

If we set m = (pr − 1)2, n = p2r, and a = b = pr (pr − 1), then we will have m < a ≤ b < n
and mn = ab, so p2r (pr − 1)2 is not in Row p2r by Fact 2. This establishes the first bullet
point above.

For the second, suppose kp2r is not in Row p2r for some k with (pr − 1)2 < k ≤ p2r. By
Fact 1, there must be integers a and b with (pr − 1)2 < a ≤ b < p2r and kp2r = ab.

The product ab must have at least 2r factors of the prime number p, meaning the two
integers a and b have at least a total of 2r factors of p between them. Therefore, there
are non-negative integers u and v such that u + v = 2r, a is a multiple of pu, and b is a
multiple of pv. By definition, there are positive integers x and y such that pux = a and
pvy = b.

We are also assuming that a ≤ b < p2r = pu+v = pupv, so a = pux < pupv and
b = pvy < pupv, which implies x < pv and y < pu. Since x, p, u, and v are non-negative
integers, we have x ≤ pv − 1 and y ≤ pu − 1. Multiplying these inequalities, we obtain
xy ≤ (pu − 1)(pv − 1). We are also assuming that kp2r = ab, so we can substitute to get

kp2r = xypupv = xypu+v = xyp2r

Thus, kp2r = xyp2r, so k = xy, which implies k ≤ (pu − 1)(pv − 1).

We can now conclude that (pr − 1)2 < k ≤ (pu − 1)(pv − 1). To finish the argument, we
will show that (pu − 1)(pv − 1) ≤ (pr − 1)2, which would imply that (pr − 1)2 < (pr − 1)2,
which is clearly false.

To show that (pu − 1)(pv − 1) ≤ (pr − 1)2, we will show that if u and v are non-negative
integers with u+ v = 2r, then the quantity (pu − 1)(pv − 1) is maximized when u = v = r.

Suppose u and v are non-negative integers with u > v and u + v = 2r. Consider the
quantity (pu−1 − 1)(pv+1 − 1) − (pu − 1)(pv − 1). We can manipulate this difference as
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follows.

(pu−1 − 1)(pv+1 − 1)− (pu − 1)(pv − 1) = pu+v − pu−1 − pv+1 + 1− pu+v + pu + pv − 1

= pu + pv − pu−1 − pv+1

= pv(pu−v + 1− pu−v−1 − p)

= pv(pu−v − p)

(
1− 1

p

)
We are assuming that u > v. Since u+ v is even, it must also be true that u− v is even.
Therefore, u−v ≥ 2. As well, p is a prime number so p ≥ 2, which implies pu−v−p > 0 and

1− 1
p
> 0. The quantity pv is positive, and so we conclude that pv(pu−v − p)

(
1− 1

p

)
> 0,

which implies that (pu−1− 1)(pv+1− 1)− (pu− 1)(pv − 1) > 0. Rearranging this inequality,
we get (pu−1 − 1)(pv+1 − 1) > (pu − 1)(pv − 1).

What we have shown is that if u and v are non-negative integers with u + v = 2r and
u > v, we can increase the value of (pu − 1)(pv − 1) by decreasing u by 1 and increasing v
by 1. It follows that (pu − 1)(pv − 1) is maximized when u and v are as close together as

possible, which happens when u = v =
2r

2
= r.

(e) In general, f(n) can be computed as follows: find the unique positive integers x and y with
x ≤ y, xy = n, and y − x as small as possible. Then f(n) = (x− 1)(y − 1).

For example, if n = p is a prime number, then the only positive factor pair is p = 1× p, so
x = 1 and y = p. Indeed, from part (b), f(p) = 0 = (1− 1)(p− 1) = (x− 1)(y− 1). If n is
a perfect square, then n = z2 for some positive integer z. Here, we must have x = y = z
because this gives y − x = 0, which is the smallest that the difference between the factors
in a factor pair could possibly be. Indeed, f(z2) = (z− 1)2 agrees with the case from part
(d) where n = p2r. As a final example, consider n = 72. Its positive factor pairs are (1, 72),
(2, 36), (3, 24), (4, 18), (6, 12), and (8, 9). The pair with the smallest difference between
the factors is (8, 9), so we have x = 8 and y = 9, giving (x−1)(y−1) = (8−1)(9−1) = 56.
Indeed, 56× 72 = 63× 64, so 56× 72 is not in Row 72. As well, you can check that 72m
is in Row 72 for each m from 57 through 72, which shows that f(72) = 56.

We will now justify that this “formula” always works.

Fix an integer n and suppose x, y, u, and v are positive integers with x ≤ y, u ≤ v, and
xy = uv = n.

If y − x ≤ v − u, then since x ≤ y, we have 0 ≤ y − x ≤ v − u, so we can conclude that
(y − x)2 ≤ (v − u)2. Expanding these expressions and adding 4n to both sides, we have

y2 − 2xy + x2 ≤ v2 − 2uv + u2

y2 − 2xy + x2 + 4n ≤ v2 − 2uv + u2 + 4n

y2 − 2xy + x2 + 4xy ≤ v2 − 2uv + u2 + 4uv

y2 + 2xy + x2 ≤ v2 + 2uv + u2

(y + x)2 ≤ (v + u)2

and since y + x and v + u are both positive, we must have y + x ≤ v + u. Essentially the
same argument in reverse shows that if y + x ≤ v + u, then y − x ≤ v − u.
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We have shown that y − x ≤ v − u exactly when y + x ≤ v + u. This implies that if we
consider all positive factor pairs of n, the one that has the smallest difference is also the
one that has the smallest sum. Therefore, we can restate our “formula” as follows: Given
a positive integer n, let x and y be positive integers with xy = n and x + y as small as
possible. Then f(n) = (x − 1)(y − 1). We will assume that the integers x and y satisfy
x ≤ y. If not, then they can be relabelled.

The overall structure of the argument will resemble the arguments for parts (c) and (d).
That is, we will show that xy(x− 1)(y− 1) is not in Row n, but if (x− 1)(y− 1) < m ≤ n,
then mxy is in Row n. The solution presented will use, without proof, a few well-known
facts about divisibility and greatest common divisors.

To see that xy(x− 1)(y − 1) is not in Row n, take m = (x− 1)(y − 1), a = y(x− 1), and
b = x(y − 1) and apply Fact 2. That these choices of m, a, b, and c satisfy the conditions
of Fact 2 can be verified in essentially the same way as they were in the solutions to parts
(c) and (d).

Now suppose m is an integer with (x − 1)(y − 1) < m ≤ n = xy such that mn is not in
Row n. By Fact 1, there are integers a and b such that m < a ≤ b < n and ab = mn. Let

d = gcd(n, b) and then define e =
n

d
and f =

b

d
. Observe that the integers e and f must

satisfy gcd(e, f) = 1 since if they had a common divisor larger than 1, then the greatest
common divisor of n and b would need to be larger than d.

Dividing both sides of ab = mn by d, we get af = me, which shows that af is a multiple
of e. We have already noted that e and f have no common divisors larger than 1, so we
are forced to conclude that a is a multiple of e. That is, there must be some integer g such
that a = eg.

To summarize, so far we have that d = gcd(b, n), de = n, df = b, and eg = a. Consider the
integers e and f and suppose e ≤ f . Multiplying both sides by d gives de ≤ df or n ≤ b,
but this contradicts our assumption that b < n, so we cannot have e ≤ f . Therefore,
f < e, and since both e and f are integers, we get f ≤ e − 1. Similarly, if d ≤ g, then
de ≤ eg or n ≤ a, which contradicts our assumption, so we conclude that g < d and so
g ≤ d− 1.

We are assuming that (x− 1)(y − 1) < m, so we have the following

n(x− 1)(y − 1) < mn = ab = egdf ≤ de(e− 1)(d− 1)

which implies n(x − 1)(y − 1) < de(d − 1)(e − 1). Using that n = de, we cancel to get
(x−1)(y−1) < (d−1)(e−1) which can be expanded to get xy−x−y+1 < de−d−e+1,
and since de = xy = n, this simplifies to d+e < x+y. However, xy = n is the factorization
of n into a product of positive integers that minimizes the sum of the factors. Since de = n,
the inequality d+ e < x+ y is a contradiction of this minimality.

We conclude that our assumption that mn is not in Row n must be false, which means
mn is in Row n. This completes the proof.
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Problem of the Month
Problem 4: January 2024

In this problem, we will enclose a list of positive integers in square brackets. For example,
[1, 2, 4, 7, 9] is a list of positive integers of length five. All lists in this problem will be expressed in
non-decreasing order. To denote the list of consecutive integers from a to b inclusive, we will use
the notation [a : b]. For example, [4 : 7] denotes the list [4, 5, 6, 7].

Given a list, A, of positive integers, we will define f(A) to be the increasing list of distinct positive
integers that are expressible as the sum of some, but not all, of the items in A. A sum is allowed
to consist of just one item in A, and each item in A can be used at most once in a particular sum.

For example, if A = [1, 1, 3, 7], then the sums of at least one but not all of the items in A are shown
below.

1 = 1 1 + 1 = 2 1 + 1 + 3 = 5

1 = 1 1 + 3 = 4 1 + 1 + 7 = 9

3 = 3 1 + 7 = 8 1 + 3 + 7 = 11

7 = 7 1 + 3 = 4 1 + 3 + 7 = 11

1 + 7 = 8

3 + 7 = 10

Therefore, f(A) = [1, 2, 3, 4, 5, 7, 8, 9, 10, 11].

A list, D, of positive integers is called compressible if there exists some list A with f(A) = D.
In this situation, we say that D is compressed by A or that A compresses D. From the example
above, we have that [1, 2, 3, 4, 5, 7, 8, 9, 10, 11] is compressible and is compressed by [1, 1, 3, 7].

(a) Find all lists of length four that compress [1 : 9] and explain why no list of length three or
less can compress [1 : 9].

(b) Find a list, A, that compresses [1 : 100] and is as short as possible.

(c) Show that for all positive integers n, the list [1 : n] is compressible. For each n, determine
the smallest possible length of a list that compresses [1 : n].

(d) Show that for all positive integers k ≥ 3 there are only finitely many compressible lists of k
consecutive positive integers. That is, for each positive integer k ≥ 3, show that there are
only finitely many positive integers m for which [m : m+ k − 1] is compressible.

(e) Find the largest positive integer k such that [5 : k] is not compressible. (A full solution will
not be provided for this part.)



Problem of the Month
Problem 4: January 2024

Hint

(a) Any list that compresses [1 : 9] must contain 1. Think about the largest possible number of
integers in f(A) when A is a list of length k.

(b) First, try to find a list that compresses [1 : 63] that is as short as possible. It might help to
read about the binary representation of positive integers.

(c) Work out a few more examples like the one in (b). It is possible to compress [1 : n] using a
list A that consists entirely or almost entirely of powers of 2.

(d) For k ≥ 3 and m ≥ 2, if A compresses [m : m+ k − 1], then A must contain m and m+ 1.

(e) The answer is 39. Do not worry about trying to compress [5 : k] using as short a list as
possible. As well, inductive thinking could be useful here. Suppose you can show that there
is some k with the property that [5 : k], [5 : k + 1], [5 : k + 2], [5 : k + 3], and [5 : k + 4] are
all compressible. Can you deduce that [5 : n] is compressible for all n ≥ k?



Problem of the Month
Solution to Problem 4: January 2023

(a) The positive integer 1 cannot be expressed as the sum of more than 1 positive integer,
so if A compresses [1 : 9], then A must contain the integer 1. We want A to be a list of
positive integers of length four, and 1 is the smallest positive integer, so we can assume
that A = [1, a, b, c] where a, b, and c are integers with 1 ≤ a ≤ b ≤ c.

The largest sum in f(A) must be the sum of the three largest items in A, which is a+b+c,
and since f(A) = [1 : 9], we have a+ b+ c = 9.

Suppose that a = 1 and b = 1, then a+b+c = 9 implies that c = 7, but then A = [1, 1, 1, 7],
which does not satisfy f(A) = [1 : 9] since, for example, 4 is not in f(A). Therefore, a and
b are not both 1.

Suppose that a = 1 and b = 2. Then a + b + c = 9 implies c = 6, so A = [1, 1, 2, 6], but
then f(A) does not contain 5 so f(A) ̸= [1 : 9]. Therefore, we cannot have a = 1 and
b = 2.

Suppose that a = 1 and b = 3. Then c = 5, so A = [1, 1, 3, 5]. It can be verified that
f([1, 1, 3, 5]) = [1 : 9], so this gives one possible list A.

Suppose a = 1 and b ≥ 4. Then c ≥ 4 as well since b ≤ c, but if A = [1, 1, b, c] where b ≥ 4
and c ≥ 4, then f(A) does not contain 3 which means f(A) ̸= [1 : 9].

So far, we have shown that A = [1, 1, 3, 5] is the only list of the form we seek with a = 1
and f(A) = [1 : 9].

We will now similarly examine the possibilities when a = 2.

If a = 2 and b = 2, then c = 5, so A = [1, 2, 2, 5]. It can be checked that f(A) = [1 : 9] in
this case.

If a = 2 and b = 3, then c = 4 and A = [1, 2, 3, 4]. It can be checked that f(A) = [1 : 9] in
this case.

If a = 2 and b ≥ 4, then a+ b+ c = 9 implies that c < 4, but we are assuming that b ≤ c,
so this is impossible.

Therefore, the only possibilities with a = 2 are A = [1, 2, 2, 5] and A = [1, 2, 3, 4].

If a ≥ 3, then A = [1, a, b, c] has b ≥ 3 and c ≥ 3 as well, but this would prevent 2 from
being in f(A), so A cannot compress [1 : 9] in this case.

Therefore, the only lists of length four that compress [1 : 9] are [1, 1, 3, 5], [1, 2, 2, 5], and
[1, 2, 3, 4].

To see why no shorter list can compress [1 : 9], we use the general observation that if A
is a list of length k, then there are at most 2k − 2 integers in f(A). This is because for
each sum computed for f(A), each of the k items in A is either included in the sum or it is
not. This gives 2k possible ways of computing a sum of some of the items in A. However,
this count includes the sum of none of the items in A (all are excluded from the sum) and
the sum of all of the items in A. Both of these sums are excluded from f(A), so there are
2k − 2 ways to compute a sum to go in f(A). We note that there could be multiple ways
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to express the same integer in f(A) as a sum of items in A, which is why we can only say
there are at most 2k − 2 integers in f(A) – in practice, there could be fewer than 2k − 2.

If k ≤ 3, then 2k − 2 ≤ 23 − 2 = 6, and so if A is a list of length at most three, then f(A)
has at most 6 integers. Therefore, [1 : 9], which has nine integers, cannot be compressed
by a list of length less than four.

(b) At the end of the solution to part (a), we argued that if A is a list of length k, then there
are at most 2k − 2 integers in f(A). Since 26 − 2 = 62 and 27 − 2 = 126, we need k ≥ 7 to
achieve 2k − 2 ≥ 100. Therefore, a list that compresses [1 : 100] must have length at least
seven. Now, we will provide a list of minimal length (seven) that compresses [1 : 100].

Consider A = [1, 2, 4, 8, 16, 32, 38]. Note that 1 is in f(A) and that the sum of all items in
A is 1 + 2 + 4 + 8 + 16 + 32 + 38 = 101. Since f(A) has sums of some but not all of the
items in A, the integers in f(A) are at most 100. Rather than computing all of the sums,
we will explain why f(A) = [1 : 100] in a way that will give some insight for part (c).

We first consider the sums that are achievable without using the integer 38. The other
integers in A are 1 = 20, 2 = 21, 4 = 22, 8 = 23, 16 = 24, and 32 = 25. The sums that
can be obtained by adding some or all of these integers are exactly the integers from 1
through 63 = 26 − 1. To get an idea of how this works, read about “binary expansions” or
“binary representations” of integers. As an example, to represent 53 as a sum of powers
of 2, first, find the largest power of 2 that is no larger than 53, which is 32. Then compute
53 − 32 = 21 to get 53 = 32 + 21. Now find the largest power of 2 that is no larger
than 21, which is 16. Subtract to get 21 − 16 = 5 or 21 = 16 + 5. Now substitute to get
53 = 32+16+5. Repeating this process, find the largest power of 2 that is no larger than
5, which is 4. Subtracting, 5 − 4 = 1 so 5 = 4 + 1, but what remains, 1, is a power of 2,
so we get 53 = 32 + 16 + 4 + 1 = 25 + 24 + 22 + 20.

The integers from 1 through 63 are all in f(A). To write the integers from 64 through 100 as
a sum of integers in A, notice that 100−38 = 62, and so if 64 ≤ m ≤ 100, thenm−38 ≤ 62.
To write such m as a sum of integers from A, compute r = m− 38 ≤ 62 < 63, write r as
a sum of the integers from A other than 38, then include 38 in the sum. For example, to
see that 91 is in f(A), compute r = 91 − 38 = 53, then use that 53 = 32 + 16 + 4 + 1 to
get that 91 = 1 + 4 + 16 + 32 + 38.

The only thing left to check is that none of the sums described above require using all
seven items in A. To see why this is not a concern, recall that the sum of all items in A is
101, so if we express an integer that that is no larger than 100 as a sum of items from A,
then it cannot possibly use every item in A.

(c) The result of part (b) generalizes as follows. For every positive integer n, the minimum
length of a list A that compresses [1 : n] is ⌈log2(n+2)⌉. Notice that when n = 100, since
100+2 = 102 is strictly between 26 = 64 and 27 = 128, we have ⌈log2(100+2)⌉ = 7, which
agrees with the result from part (b).

We will prove that ⌈log2(n + 2)⌉ is the minimum length of a list that compresses [1 : n]
and, in the process, prove that [1 : n] is always compressible.

To see that ⌈log2(n+2)⌉ is the minimum length of a list that compresses [1 : n] in general,
we will show that a list of length less than ⌈log2(n+ 2)⌉ cannot possibly compress [1 : n],
and then we will construct a list of length exactly ⌈log2(n+2)⌉ that does compress [1 : n].
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Suppose A has length k < ⌈log2(n+ 2)⌉. Since k and ⌈log2(n+ 2)⌉ are both integers, this
implies k ≤ ⌈log2(n+2)⌉− 1. For every integer x, it is true that ⌈x⌉− 1 < x ≤ ⌈x⌉, so we
conclude that k ≤ ⌈log2(n+ 2)⌉ − 1 < log2(n+ 2).

From k < log2(n + 2), we get 2k < n + 2 or 2k − 2 < n. As argued earlier, a list A of
length k has the property that there are at most 2k − 2 distinct integers in f(A). Since
2k − 2 < n, we cannot have f(A) = [1 : n] when A is a list of length k < ⌈log2(n + 2)⌉
since [1 : n] contains n integers.

We have shown that if A compresses [1 : n], then it must have length at least ⌈log2(n+2)⌉.
We will now produce a list of length ⌈log2(n + 2)⌉ that compresses [1 : n]. This requires
explaining how to produce the list, then showing that the list has the correct length.

Suppose n is a positive integer. Define k to be the largest non-negative integer with the
property that 2k ≤ n + 1 and define m = n + 2− 2k. The list A consisting of the powers
of 2 from 1 through 2k−1 together with m will compress [1 : n] and have length exactly
⌈log2(n+2)⌉. Notice that it is possible for m to be equal to one of the powers of 2 from 1
through 2k−1. In this situation, the list A will include two copies of that power of 2.

Before verifying that the list described above does what is required, we will work through
a couple of examples.

• When n = 1, we observe that 20 = 1 and 21 = 2 are the powers of 2 that are no larger
than n + 1 = 2, and so k = 1. Thus, 2k−1 = 1 and m = n + 2− 2k = 1 + 2− 2 = 1,
so the list is A = [1, 1]. Indeed f([1, 1]) = [1].

• When n = 100, we get k = 6, so 2k−1 = 32 and m = n+ 2− 2k = 100 + 2− 64 = 38,
so the list is A = [1, 2, 4, 8, 16, 32, 38], which is exactly the list from part (b).

We will now show that list A has length ⌈log2(n + 2)⌉. The integer k is the largest non-
negative integer with the property that 2k ≤ n+1, and A contains 20, 21, and so on up to
2k−1, along with the integer m. This gives a total of k+1 items in A. Therefore, it suffices
to show that with k chosen as described above, we have ⌈log2(n+ 2)⌉ = k + 1.

The function log2 is increasing, meaning that if x and y are positive real numbers with
x < y, then log2(x) < log2(y). Using this fact along with the fact that 2k ≤ n+ 1, we get
that k ≤ log2(n+ 1) < log2(n+ 2). As well, k is the largest non-negative integer with the
property that 2k ≤ n+ 1, which means n+ 1 < 2k+1.

Suppose k + 1 < log2(n+ 2). Then 2k+1 < n+ 2. From above, we also have n+ 1 < 2k+1,
so we conclude that n+ 1 < 2k+1 < n+ 2. The quantities n+ 1 and n+ 2 are consecutive
integers, so the integer 2k+1 cannot lie strictly between them. Therefore, it is impossible
for k + 1 < log2(n + 2), which means we must have log2(n + 2) ≤ k + 1. Combining this
inequality with k < log2(n+2), we have k < log2(n+2) ≤ k+1, and so we conclude that
⌈log2(n+ 2)⌉ = k + 1.

It remains to show that A compresses [1 : n]. As discussed earlier, since list A contains
the items 20, 21, and so on up to 2k−1, as well as at least one other item, m, f(A) contains
all of the integers from 1 through 2k−1+1 − 1 = 2k − 1. This is because these integers can
be expressed using the sum of some or all of the powers of 2 from 1 through 2k−1. These
are exactly the integers that can be expressed without using m.

If we do use m, then we can express every integer from m through m+ 2k − 1 as a sum of
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items in A. Since m+ 2k − 1 is the sum of all items in A, it is excluded from f(A) and so
we have that f(A) contains all of the integers from m to m + 2k − 2, and nothing larger.
By definition, m = n+ 2− 2k, so m+ 2k − 2 = (n+ 2− 2k) + 2k − 2 = n.

We have shown that f(A) is the list consisting of the integers that are in [1 : 2k − 1] or
[m : n]. To see that f(A) is exactly [1 : n], we need to show that m ≤ 2k. There might
be overlap corresponding to multiple ways to express some integers in [1 : n] in f(A), but
this is allowed.

Suppose m > 2k. Since these quantities are integers, we must have m ≥ 2k + 1. By
definition, m = n+2−2k, and so we get that n+2−2k ≥ 2k+1, which can be rearranged
to get n + 1 ≥ 2k + 2k = 2k+1. Therefore, we have 2k+1 ≤ n + 1, but k was chosen to be
the largest integer with 2k ≤ n+ 1, so it is not possible that 2k+1 ≤ n+ 1. Therefore, our
assumption that m > 2k must be wrong, so we conclude that m ≤ 2k, as desired.

(d) Fix a positive integer k ≥ 3. We will show that for every integer m ≥ k, [m : m + k − 1]
is not compressible.

To see this, suppose A is a list that compresses [m : m + k − 1]. Since k ≥ 3, there are
at least three items in [m : m + k − 1]. If A has only two items, then f(A) has at most
two integers since the allowable sums are just the two “singleton sums”. Therefore, A also
contains at least three items. Note that since m is the smallest integer in f(A), m must
also be the smallest integer in A. (If r is in A, then the “singleton sum” r must also be in
f(A), so all integers in A must be at least m. Also, since there is nothing smaller than m
in A, the only way to produce m in f(A) is by the “singleton sum” m.)

Since k ≥ 3, m + 1 is also in f(A). If m + 1 is the sum of at least two items in A, then
they must all be smaller than m+ 1, but the only integer in A that is smaller than m+ 1
is m. This would mean 1 must be in A, but this is impossible since 1 < k ≤ m and m is
the smallest element in A. Therefore, we must also have m + 1 in A, and so both m and
m+ 1 are in A.

Now recall that A has at least three items, so there is at least one element other than m
and m + 1, and so m + m + 1 = 2m + 1 is in f(A). Since f(A) = [m : m + k − 1], we
must then have 2m+ 1 ≤ m+ k − 1, which can be rearranged to get m ≤ k − 2, which is
impossible since m ≥ k.

Therefore, it is not possible to compress [m : m + k − 1] when m ≥ k. This means that
there are only finitely many m for which [m : m + k − 1] is compressible since all such m
must be at most k.

(e) As mentioned in the hint, the answer is 39. This means [5 : 39] is not compressible, but
[5 : k] is compressible for all k ≥ 40. We will include a sketch of the proof here.

One can check that the listsA = [5, 6, 7, 8, 9, 10], B = [5, 5, 6, 6, 7, 8, 9], C = [5, 5, 6, 7, 7, 8, 9],
D = [5, 5, 6, 7, 8, 8, 9], and E = [5, 5, 6, 7, 8, 9, 9] compress the lists [5 : 40], [5 : 41], [5 : 42],
[5 : 43], and [5 : 44], respectively.

Now suppose a list A compresses [5 : k] and suppose B is the list A with a 5 added to it.
It can be shown that B compresses the list [5 : k + 5]. Since [5 : 40] is compressible, this
shows that [5 : 45] is compressible. Since [5 : 41] is compressible, [5 : 46] is compressible.
Since we have five consecutive values of k for which [5 : k] is compressible (k = 40 through
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k = 44), this reasoning can be used to show that [5 : k] is compressible for all k ≥ 40.
Note that the lists to compress [5 : k] given by this inductive process will not, in general,
be as short as possible.

Now suppose a list A compresses [5 : 39]. It can be argued using reasoning similar to
that from earlier parts that 5 must be in A, 5 is the smallest integer in A, and that the
integers 6, 7, 8, and 9 also appear in A. Since the smallest integer in A is 5, the largest
sum in f(A) is 5 less than the sum of all items in A. Therefore, the sum of all items in
A must be 39 + 5 = 44. We already have 5, 6, 7, 8, and 9 in A which have a sum of
5 + 6 + 7 + 8 + 9 = 35, and so the remaining items in A have a sum of 44− 35 = 9.

Next, note that using only the five items 5, 6, 7, 8, and 9, a sum of 10 is impossible. The
list A cannot contain the integer 10 itself since we already determined that the remaining
items in A have a sum of 9. It also cannot include the integers 1, 2, 3, or 4 since 5 is the
smallest integer in A. Therefore, the 10 in f(A) must come from the sum of two 5s, which
means A must include a second 5.

We now have that A contains (at least) the items 5, 5, 6, 7, 8, and 9, which have a total of
40. Since the sum of all items in A is 44, there must be an additional item in A that is no
larger than 44−40 = 4. This is impossible, so we conclude that [5 : 39] is not compressible.
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Problem of the Month
Problem 5: February 2024

This problem explores a counting technique that uses binomial coefficients. The main problems
for this month are on the next page. For anyone who is not already familiar with the notation
of binomial coefficients, the first page includes an introduction with a few standard exercises.

For non-negative integers n and k, the expression

(
n

k

)
denotes the number of ways to choose k

objects from n distinct objects. For this reason, the quantity

(
n

k

)
is pronounced “n choose k”.

For example, consider the four letters A, B, C, and D. There are 4 ways to select three of them.
They are

A,B,C A,B,D A,C,D B,C,D

Since there are 4 ways to choose 3 of the objects (order does not matter – it only matters which

objects are chosen), we have that

(
4

3

)
= 4.

Try the following exercises. Hints will be provided, but solutions will not. These exercises are
intended as a way to get familiar with the notation, so they may not be explicitly useful in the
problems on the next page.

(i) Show that

(
5

2

)
= 10.

(ii) What are

(
n

0

)
and

(
n

1

)
?

(iii) Convince yourself that

(
n

k

)
=

(
n

n− k

)
for 0 ≤ k ≤ n.

(iv) Convince yourself that

(
n

k

)
+

(
n

k + 1

)
=

(
n+ 1

k + 1

)
when 0 ≤ k < n.

(v) Convince yourself that

(
n

k

)
is equal to the coefficient of xk in the expanded form of (1+x)n.

This is why

(
n

k

)
is called a “binomial coefficient”.

It turns out that there is a convenient way to compute binomial coefficients using factorial notation.

If n ≥ k ≥ 0 are integers, then

(
n

k

)
=

n!

k!(n− k)!
. Here, m!, pronounced “m factorial”, is defined

so that m! = 1 when m = 0 and m = 1, and m! = 1× 2× 3×· · ·× (m− 1)×m for integers m ≥ 2.

It is also a useful exercise to think about why this formula for

(
n

k

)
works.



(a) For a positive integer n, show that

(
n+ 1

2

)
is the answer to each of these three questions.

Think about why the answers to all three questions are the same.

(i) What is 1 + 2 + 3 + · · ·+ n?

(ii) How many pairs (x, y) of non-negative integers satisfy x+ y ≤ n− 1?

(iii) How many triples (x, y, z) of non-negative integers satisfy x+ y + z = n− 1?

(b) Let n ≥ 0 and r ≥ 1 be integers. Show that the following two questions have the same
answer and express the common answer as a single binomial coefficient.

(i) How many ways are there to place n indistinguishable balls in r distinguishable cups?

(ii) How many non-negative integer solutions are there to the equation x1+x2+· · ·+xr = n?

(c) Let n ≥ 0 and r ≥ 1 be integers. By counting r-tuples of non-negative integers (x1, x2, . . . , xr)
that satisfy x1 + x2 + x3 + · · ·+ xr ≤ n, prove the identity(

r − 1

r − 1

)
+

(
r

r − 1

)
+

(
r + 1

r − 1

)
+

(
r + 2

r − 1

)
+ · · ·+

(
r − 1 + n

r − 1

)
=

(
n+ r

r

)
Clarification: The quantity on the left in the equation above is the sum of the binomial

coefficients

(
r − 1 +m

r − 1

)
where m ranges from 0 to n.

(d) Determine the number of non-negative integers x with x < 1010 that have a digit sum of 21

(e) For a positive integer x = anan−1an−2 · · · a1a0 where the ai are the digits of x, the alternating
sum of x is the expression a0 − a1 + a2 − a3 + · · · + (−1)nan. For example, the alternating
sum of 744923 is 3− 2 + 9− 4 + 4− 7 = 3. Determine the number of non-negative integers
with at most 8 digits that have an alternating sum equal to 0.

(f) How many ways are there to choose integers a, b, and c such that 1 ≤ a < b < c ≤ 2024 and
a+ b+ c = 2027?



Problem of the Month
Problem 5: February 2024

Hint

First, some hints on the exercises.

(i) List the two-element subsets of {1, 2, 3, 4, 5}.

(ii) The answers are 1 and n. It might take a moment of reflection to convince yourself that(
n

0

)
= 1 makes sense.

(iii) If k objects are chosen from a set of n objects, then how many objects are not chosen?

(iv) If you are to choose k + 1 integers from the set {1, 2, 3, . . . , n, n + 1}, then either n + 1 is
chosen or it is not.

(v) The quantity (1 + x)n is equal to the product of n copies of (1 + x). Try expanding (1 + x)n

for a few small values of n without collecting like terms. As an example, think about how
an x3 term could arise during the expansion of (1 + x)(1 + x)(1 + x)(1 + x)(1 + x).

Below are the hints for the main problems.

(a) If you have never seen a proof of (a)(i), try writing the sum 1 + 2 + 3 + · · · + n in reverse
order directly under the sum 1+2+3+ · · ·+n. Now add each column. For (a)(ii), consider
the possible values of x. For (a)(iii), consider the equation x+ y + z = n− 1 for a fixed pair
(x, y).

(b) Imagine arranging the n identical balls in a row and placing r − 1 sticks between them. By
doing this, you have partitioned the n balls into r smaller groups.

(c) Introduce a new variable, x0, and consider the equation x0 + x1 + · · ·+ xr = n.

(d) The non-negative integers x with x < 1010 are exactly the integers that have at most 10
digits. Consider the equation x1 + x2 + · · ·+ x10 = 21 where 0 ≤ xi ≤ 9.

There was an omission in part (d). The original question said “integers” where
it should have said “non-negative integers”.

(e) This question can be analyzed by examining the equation x1−x2+x3−x4+x5−x6+x7−x8 = 0.
Rearrange this equation and use the ideas from (b) and (d).

(f) Let x = a− 1, y = b− 1, and z = c− 1. Find the number of non-negative integer solutions
to x+ y + z = 2024 with x, y, and z distinct.



Problem of the Month
Solution to Problem 5: February 2024

(a) The binomial coefficient
(
n+1
2

)
is equal to (n+1)!

2!(n−1)!
, and since (n+1)!

(n−1)!
= (n+ 1)n, we get that(

n+1
2

)
= n(n+1)

2
. By the well-known formula for the sum of the first n positive integers, we

have 1 + 2 + 3 + · · ·+ (n− 1) + n = n(n+1)
2

, and so the answer to (i) is
(
n+1
2

)
.

For (ii), we will consider the possible values of x. Note that since x and y are non-negative
and x+ y ≤ n− 1, we must have that 0 ≤ x ≤ n− 1.

If x = 0 and x+ y ≤ n− 1, then y can be any of the integers from 0 through n− 1, for a
total of n possibilities.

If x = 1, then y can be any of the integers from 0 through n − 1 − 1 = n − 2, for a total
of n− 1 possibilities.

In general, if x = k for some k with 0 ≤ k ≤ n − 1, then y can be any integer from 0
through n− 1− k. There are a total of n− k integers from 0 through n− 1− k.

Therefore, the number of pairs is n + (n − 1) + (n − 2) + · · · + [n − (n − 1)], but this is
just the sum 1+2+3+ · · ·+n written in reverse order. By part (i), we conclude that the
number of non-negative integer pairs (x, y) with x+ y ≤ n− 1 is

(
n+1
2

)
.

For (iii), observe that if x and y are non-negative integers with x+ y ≤ n− 1, then there
is exactly one non-negative integer z for which x+ y + z = n− 1. Therefore, the number
of non-negative integer pairs (x, y) with x+ y ≤ n− 1 is exactly the same as the number
of non-negative integer triples (x, y, z) with x+ y + z = n− 1.

(b) Suppose the r distinguishable cups are labelled Cup 1, Cup 2, and so on, up to Cup r.
Suppose the n balls are placed in the r cups. If we let xk be equal to the number of balls in
Cup k (noting that it is possible that xk = 0), then we will have x1+x2+ · · ·+xr = n since
there are n balls in total. On the other hand, if we have a non-negative integer solution
(x1, x2, . . . , xr) to x1 + x2 + · · · + xr = n, then if we place xk balls in Cup k for each k,
then we will have distributed exactly n balls among the r cups. Finally, observe that every
placement of n balls in the r cups leads to a distinct solution to x1 + x2 + · · · + xr = n,
and every solution to this equation gives a distinct way to distribute n balls in the r cups.
This shows that the answers to questions (i) and (ii) are equal.

We will now show that the answer to question (ii) (and hence, the answer to question (i)),
is
(
n+r−1
r−1

)
.

We need to reimagine the distribution of balls into cups as a choice of some objects. To
give an idea of how it works, we will focus on the special case with n = 10 and r = 4.
That is, we want to count the number of ways to place 10 indistinguishable balls in 4
distinguishable cups.

Imagine laying the 10 balls in a row. We want to place them among 4 cups, which means
we want to break the 10 balls into 4 groups (where some of the groups could be empty).
We can do this by placing three partitions somewhere among the 10 balls that are now

1



lined up in a row. For example, the partitions could be placed as shown in the diagram
below. Each ball is represented by a circle and each partition is represented by a vertical
line.

This corresponds to placing 2 balls in Cup 1, 3 balls in Cup 2, 1 ball in Cup 3, and 4 balls
in Cup 4. For a different example, we could place the partitions as follows.

In this case, two of the partitions are next to each other with no balls between them. This
corresponds to the third cup having no balls in it.

In fact, any arrangement of 10 indistinguishable balls and 3 indistinguishable partitions
will corresponds to an ordered list of four non-negative integers that have a sum of 10.

Therefore, there are 10 + 3 = 13 positions where the balls and partitions are to be placed,
and every way to choose three of the positions to be partitions corresponds to an ordering
of 10 balls and 3 partitions. Therefore, the answer to the question in this case is

(
13
3

)
.

In general, if there are r cups, then we need to use r− 1 partitions. This means there will
be n balls and r−1 partitions for a total of n+r−1 objects. There are r−1 positions that
need to be chosen for the partitions. Thus, the number of ways to place n indistinguishable
balls in r distinguishable cups is

(
n+r−1
r−1

)
.

(c) First note that non-negative integers x1, x2, . . . , xr satisfy x1 + x2 + · · · + xr ≤ n if and
only if x1 + x2 + · · · + xr = m for some integer m with 0 ≤ m ≤ n. From part (b), the
number of non-negative integer solutions to x1 + x2 + · · ·+ xr = m is

(
r−1+m
r−1

)
. Therefore,

the number of non-negative integer solutions to x1 + x2 + · · ·+ xr ≤ n is(
r − 1 + 0

r − 1

)
+

(
r − 1 + 1

r − 1

)
+

(
r − 1 + 2

r − 1

)
+ · · ·+

(
r − 1 + n

r − 1

)
=

(
r − 1

r − 1

)
+

(
r

r − 1

)
+

(
r + 1

r − 1

)
+ · · ·+

(
r + n− 1

r − 1

)

Now suppose x0, x1, . . . , xr are non-negative integers with x0 + x1 + · · · + xr = n. Then
we must have x1 + x2 + · · · + xr ≤ n. On the other hand, if x1 + x2 + · · · + xr ≤ n, then
there is a unique non-negative integer x0 that satisfies x0 + x1 + · · ·+ xr = n. This shows
that the number of non-negative integer solutions to x0 + x1 + · · ·+ xr = n is the same as
the number of non-negative integer solutions to x1 + x2 + · · ·+ xr ≤ n. From part (b), the
number of solutions to x0 + x1 + · · ·+ xr = n is

(
n+(r+1)−1
(r+1)−1

)
=

(
n+r
r

)
.

We have shown that the number of non-negative integer solutions to the inequality
x1 + x2 + · · ·+ xr ≤ n is equal to(

r − 1

r − 1

)
+

(
r

r − 1

)
+

(
r + 1

r − 1

)
+ · · ·+

(
r + n− 1

r − 1

)
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and it is also equal to
(
n+r
r

)
, so we conclude that(

r − 1

r − 1

)
+

(
r

r − 1

)
+

(
r + 1

r − 1

)
+ · · ·+

(
r + n− 1

r − 1

)
=

(
n+ r

r

)
This identity is sometime called the Hockey Stick Identity. If you are interested in knowing
why it has such a strange name, read about Pascal’s Triangle and try to interpret this result
using Pascal’s Triangle.

(d) The integer k having the property that k < 1010 is the same as the integer k having at
most 10 decimal digits. Thus, every such integer takes the form k = a9a8a7 · · · a1a0 where
a9, a8, a7, . . . , a1, a0 are the digits of k, but some of the leading digits may be equal to 0.
For example, to represent the integer 19723 in this way, we would write it as 0000019723
so a9 = a8 = a7 = a6 = a5 = 0, a4 = 1, a3 = 9, a2 = 7, a1 = 2, and a0 = 3.

Thus, to count the non-negative integers with a digit sum of 21, we need to find all non-
negative integer solutions to the equation a9 + a8 + a7 + · · · + a1 + a0 = 21, but we have
an additional restriction that each ai is a digit, meaning 0 ≤ ai ≤ 9.

Switching notation slightly to match earlier parts, the answer to the question is equal to
the number of solutions to the equation x1+x2+ · · ·+x10 = 21 where each xi is an integer
with 0 ≤ xi ≤ 9.

By part (b), the number of non-negative integer solutions to x1 + x2 + · · · + x10 = 21
without the restriction that xi ≤ 9 is

(
21+10−1
10−1

)
=

(
30
9

)
. The total of

(
30
9

)
includes some

solutions that violate xi ≤ 9 for some i. We will now count the solutions that have xi ≥ 10
for at least one i so we can remove these from the count.

First, we claim that for each index i, there are
(
20
9

)
solutions that have xi ≥ 10. For

example, consider a non-negative integer solution to x1+x2+ · · ·+x10 = 21 with x1 ≥ 10.
If we set y1 = x1 − 10 then y1 is a non-negative integer and

y1 + x2 + · · ·+ x10 = (x1 − 10) + x2 + · · ·+ x10 = (x1 + x2 + · · ·+ x10)− 10 = 21− 10 = 11

Also, if we consider a non-negative integer solution to y1 + x2 + · · · + x10 = 11, and set
x1 = y1+10, then we obtain a non-negative integer solution to x1+x2+ · · ·+x10 = 21 with
x1 ≥ 10. By part (b), there are

(
20
9

)
non-negative integer solutions to y1+x2+· · ·+x10 = 11

and so, equivalently, there are
(
20
9

)
non-negative integer solutions to x1+x2+ · · ·+x10 = 21

with x1 ≥ 10.

Similarly, for each i from 1 through 10, there are exactly
(
20
9

)
non-negative integer solutions

to x1 + x2 + · · · + x10 = 21 with xi ≥ 10. Note that these different sets of solutions have
overlap and so the number of solutions with xi ≥ 10 for at least one i is not 10

(
20
9

)
. This

is an overcount. For example, the solution x1 = 10, x2 = 10, x3 = 1, and x4 = x5 = x6 =
x7 = x8 = x9 = x10 = 0 is double counted: once as a solution with x1 ≥ 10 and once as a
solution with x2 ≥ 10.

Next, we claim that for every pair of indices i and j, with i ̸= j, there are
(
10
9

)
non-negative

integer solutions to x1 + x2 + · · · + x10 = 21 with xi ≥ 10 and xj ≥ 10. Each of these
solutions will be double counted in the count 10

(
20
9

)
. Note that there are no solutions to

x1 + x2 + · · · + x10 = 21 that have more than two variables exceeding 9 and so this will
give us the complete picture.

3



For an example, consider a non-negative integer solution to x1 + x2 + x3 + · · ·+ x10 = 21
with x1 ≥ 10 and x2 ≥ 10. If we set y1 = x1 − 10 and y2 = x2 − 10 then y1 and y2 are
non-negative integers satisfying y1 + y2 + x3 + · · · + x10 = 1. Similarly, a non-negative
integer solution to y1 + y2 + x3 + · · · + x10 = 1 corresponds to a non-negative integer
solution to x1 + x2 + x3 + · · · + x10 = 21 with x1, x2 ≥ 10. By part (b), there are

(
10
9

)
non-negative integer solutions to y1+ y2+x3+ · · ·+x10 = 1 and so, equivalently, there are(
10
9

)
non-negative integer solutions to x1 + x2 + · · ·+ x10 = 21 with x1 ≥ 10 and x2 ≥ 10.

Similarly, for each pair i and j, with i ̸= j, there are
(
10
9

)
solutions to x1+x2+· · ·+x10 = 21

with xi ≥ 10 and xj ≥ 10.

Since there are
(
10
2

)
ways to choose two indices, there are

(
10
2

)(
10
9

)
= 45

(
10
9

)
non-negative

integer solutions that have two variables exceeding 9. From this, we conclude that the
number of non-negative integer solutions to x1 + x2 + · · ·+ x10 = 21 that have xi ≥ 10 for
at least one i is given by 10

(
20
9

)
− 45

(
10
9

)
.

Therefore, the total number of non-negative integer solutions to x1 + x2 + · · · + x10 = 21
with xi ≤ 9 for all i can be calculated as follows:(

30
9

)
− 10

(
20
9

)
+ 45

(
10
9

)
= 14 307 150− 10(167 960) + 45(10)

= 14 307 150− 1 679 600 + 450

= 12 628 000

(e) By the same convention as the previous problem, we can recognize every positive integer
less than 108 as an 8-digit integer by possibly prepending some 0s. Thus, we wish to count
the number of solutions to the equation x1 − x2 + x3 − x4 + x5 − x6 + x7 − x8 = 0 where
the xi are integers with 0 ≤ xi ≤ 9 for each i.

We can rearrange this equation to get x1 + x3 + x5 + x7 = x2 + x4 + x6 + x8, so we want
to count non-negative integer solutions to this equation where xi ≤ 9 for each i.

Since 0 ≤ xi ≤ 9, we must have that 0 ≤ x1+x3+x5+x7 ≤ 36 and 0 ≤ x2+x4+x6+x8 ≤ 36.
For each n from 0 through 36, let An denote the number of non-negative integer solutions
to x1 + x3 + x5 + x7 = n with xi ≤ 9 for i = 1, i = 3, i = 5, and i = 7. Since all of
the 8 variables have the exact same restrictions, we also have that An is the number of
non-negative integer solutions to x2 + x4 + x6 + x8 = n where each variable is no larger
than 9. Thus, for each n from 0 through 36, there are A2

n solutions to the equation with
each side equal to n. Therefore, the answer to the question is

A2
0 + A2

1 + A2
2 + · · ·+ A2

36

Now suppose that 0 ≤ n ≤ 36 and x1 + x3 + x5 + x7 = n with 0 ≤ xi ≤ 9 for each i. Then
(9− x1) + (9− x3) + (9− x5) + (9− x7) = 36− n, and observe that since 0 ≤ xi ≤ 9, we
have 0 ≤ 9− xi ≤ 9, and since 0 ≤ n ≤ 36, we have 0 ≤ 36−n ≤ 36. You should convince
yourself that this shows that the number of solutions to x1 + x3 + x5 + x7 = n is the same
as the number of solutions to x1 + x3 + x5 + x7 = 36 − n. In other words, An = A36−n.
When n = 18, we also have 36− n = 18, so the total we seek is equal to

2(A2
0 + A2

1 + A2
2 + · · ·+ A2

17) + A2
18

For n = 0 through n = 9, if x1 + x3 + x5 + x7 = n, then xi ≤ 9 for each i since the total
is at most 9. This means the number of solutions to x1 + x3 + x5 + x7 = n where xi ≤ 9

4



for each i is equal to the number of non-negative integer solutions without restriction. By
part (b), if 0 ≤ n ≤ 9, then An =

(
n+3
3

)
.

For n = 10 through n = 18, there are still
(
n+3
3

)
unrestricted solutions, but here the count

includes solutions with xi ≥ 10 for some i. Note that since the total is at most 18, it is
not possible for more than one variable to exceed 9. Similar to the argument in part (d),
for each i, there are

(
n+3−10

3

)
solutions with xi ≥ 10. Since there are 4 variables, there are

4
(
n+3−10

3

)
solutions with a variable exceeding 9. Therefore, An =

(
n+3
3

)
− 4

(
n+3−10

3

)
.

We now just need to compute the total.

2(A2
0 + · · ·+ A2

9) + 2(A2
10 + · · ·+ A2

17) + A2
18

= 2
((

3
3

)2
+ · · ·+

(
12
3

)2)
+ 2

(((
13
3

)
− 4

(
3
3

))2
+ · · ·+

((
20
3

)
− 4

(
10
3

))2)
+
((

21
3

)
− 4

(
11
3

))2
= 2(12 + 42 + 102 + 202 + 352 + 562 + 842 + 1202 + 1652 + 2202)

+ 2(79524 + 121104 + 172225 + 230400 + 291600 + 350464 + 400689 + 435600)

+ 448900

= 4816030

(f) Let x = a − 1, y = b − 1, and z = c − 1. Then we have 0 ≤ x < y < z ≤ 2023 and
x + y + z = 2024. Thus, we want to count the number of non-negative integer solutions
to x + y + z = 2024 where x < y < z ≤ 2023. Suppose T is the number of non-negative
integer solutions to x+ y + z = 2024 where x, y, and z are all distinct and no larger than
2023. Since there are six different arrangements of three distinct integers, exactly one of
which puts them in increasing order, the answer to the given question is 1

6
T .

To compute T , we note that by part (b) there are
(
2026
2

)
non-negative integer solutions to

x + y + z = 2024 where there are no restrictions on the non-negative integers x, y, and
z. We now need to remove those solutions where at least two of the variables are equal as
well as any that have at least one of x, y, and z greater than 2023.

If one of x, y, and z is greater than 2023, then the condition x+ y+ z = 2024 and the fact
that x, y, and z are non-negative integers implies that one of the variables equals 2024 and
the other two equal 0. Thus, any solutions with a variable greater than 2023 will also have
two variables equal to each other, so we can just count the number of solutions with at
least two variables equal and subtract this total from

(
2026
2

)
. Since 2024 is not a multiple

of 3, it is impossible that x = y = z. Therefore, we need to count the number of solutions
where exactly two variables are equal.

To count the number of solutions to x + y + z = 2024 with two variables equal, we will
count the number of solutions with x = y and triple the result since there are three choices
of which two variables are equal.

We now want to count non-negative integer solutions to 2x + z = 2024. This equation
implies that z is even, or that z = 2w for some non-negative integer w. Thus, we need to
count the number of solutions to 2x + 2w = 2024 or x + w = 1012. By part (b), this is
1013, so the number of solutions to the equation with two variables equal to eachother is
3× 1013 = 3039.

We now have that T =
(
2026
2

)
− 3039, and so the number of solutions is

1
6

((
2026
2

)
− 3039

)
= 1

6
(1013× 2025− 3039) = 1013(337) = 341381

5



Problem of the Month
Problem 6: March 2024

This month’s problem is an introduction to some of the basic ideas that come up when studying
polynomials. It is presented with many exercises interspersed among some definitions. Some of
the exercises are computational and some are theoretical.

Complex Numbers: The polynomial x2 + 1 does not have any real roots. Because of this, we
“invent” a root, and it is traditionally called i for “imaginary”. That is, we declare that i is a
number such that i2 +1 = 0 or i2 = −1. From a desire to do arithmetic with numbers “like” i, we
declare that a complex number is a number of the form a+ bi where a and b are real numbers. For
example, 1 + i and −3 + 2i are complex numbers. Remembering that i2 = −1 and using expected
arithmetic rules, we can add and multiply complex numbers. For example,

(1 + i) + (−3 + 2i) = 1 + i− 3 + 2i = −2 + 3i

(1 + i)(−3 + 2i) = (1)(−3) + (1)(2i) + (i)(−3) + (i)(2i)

= −3 + 2i− 3i+ 2i2

= −3 + 2i− 3i+ 2(−1)

= −5− i

Using the quadratic formula, complex numbers give roots to all real quadratics. For example, the
quadratic f(x) = x2 − 4x + 13 has a discriminant of (−4)2 − 4(13) = −36, and so it has no real
roots. However, if we accept that

√
−36 means “a number that squares to −36”, we can infer that

6i or −6i could reasonably be considered as
√
−36. Indeed, using the quadratic formula, we get

4±
√
−36

2
=

4± 6i

2
= 2± 3i

If you are new to complex numbers, or you just want to have some fun, you might want to check
that f(2 + 3i) = 0 and f(2 − 3i) = 0 using the methods for adding and multiplying complex
numbers demonstrated above.

For the next three exercises, it will be useful to remember that if r is a root of a polynomial p(x),
then x− r is a factor of p(x).

(a) Find all roots of the polynomial f(x) = x4 − 2x3 − 2x2 + 8.

(b) Find all roots of the polynomial g(x) = x4 + 2x2 + 1.

(c) Find all roots of the polynomial h(x) = x4 − 4.

Definition: A polynomial p(x) is called a rational polynomial if all of its coefficients are rational
numbers. The set of rational polynomials is denoted by Q[x].

Definition: Suppose p(x) ∈ Q[x] has degree at least 1. We say that p(x) is reducible in Q[x] (or
reducible over Q) if there are rational polynomials u(x) and v(x), both of degree at least 1, such
that p(x) = u(x)v(x). We say that p(x) is irreducible over Q if it is not reducible over Q. In other



words, p(x) is irreducible over Q if it cannot be factored as a product of rational polynomials of
degree lower than that of p(x).

(d) Determine whether each given polynomial is reducible or irreducible over Q.

(i) x2 − 2

(ii) x3 − 6x2 + 11x− 6

(iii) x3 + x+ 1

(iv) 2x− 5

(v) x4 + 3x2 + 2

(vi) x4 + 1

Definition: A complex number α is called algebraic if it is a root of some non-constant rational
polynomial. That is, α is algebraic if there is a polynomial p(x) ∈ Q[x] of degree at least 1 such
that p(α) = 0. The degree of the algebraic number α is the smallest positive integer d such that
there is a rational polynomial p(x) of degree d with p(α) = 0. [The word “positive” is important
because every number α is a root of the constant 0 polynomial.]

(e) Show that
√
2, 1+ 3

√
2, 1+2i, and

√
2+

√
3 are all algebraic numbers and find their degrees.

It might be easier to find the degrees after thinking about some of the later questions.

(f) Suppose α is an algebraic number of degree d. Prove that there is a unique irreducible
polynomial m(x) of degree d with leading coefficient equal to 1 such that m(α) = 0.

Note: Numbers that are not algebraic are called transcendental numbers. Two famous examples
of transcendental numbers are π and e.

Definition: If f(x) is a polynomial and α is a root of f(x), then α is a repeated root of f(x) if
there is a polynomial g(x) such that f(x) = g(x)(x−α)2. Note that α might be a complex number,
which means g(x) could have complex coefficients.

(g) Let f(x) = x7 − 3x6 + 2x5 − 2x4 + x3 + 5x2 + 4. Find complex numbers r1, r2, . . . , r7 such
that f(x) = (x− r1)(x− r2) · · · (x− r7). In other words, find all roots of f(x).
Hint: Some of the roots are small integers and every root corresponds a linear factor.

(h) Given a polynomial f(x) of degree n, if we expand the expression f(x+y) (here, y is another
variable), we can write f(x+ y) as

f(x+ y) = f0(x) + yf1(x) + y2f2(x) + · · ·+ ynfn(x)

for unique polynomials f0(x), f1(x), . . . , fn(x).

(i) For the polynomial f(x) from part (g), determine the polynomials f0(x) and f1(x)
described above and find all roots of f0(x) and f1(x).

(ii) Suppose that f(x) is a polynomial and that r is a root of f(x). Prove that r is a
repeated root of f(x) if and only if r is a root of f1(x).

(j) Prove that if p(x) and q(x) are irreducible rational polynomials with a root in common, then
there is a rational number c such that p(x) = cq(x).

(k) Prove that an irreducible rational polynomial cannot have a repeated root.

Note: The division algorithm for polynomials might be useful in some of the later problems. It
will be explained briefly in the hint.



Problem of the Month
Problem 6: March 2024

Hint

(a) The Rational Root Theorem could come in handy: If a polynomial p(x) = anx
n+an−1x

n−1+
· · ·+ a1x+ a0 has integer coefficients and r is a rational root of p(x), then it must be of the
form r = u

v
where u and v are integers, u is a divisor of a0, and v is a divisor of an.

For the polynomial in (a), this means the only possible rational roots are ±1, ±2, ±4, and
±8, the divisors of 8 (the leading coefficient is 1).

(b) This polynomial is a perfect square.

(c) This polynomial has no rational roots, but it does have a real root that is easy to find.

(d) A polynomial has a rational root if and only if it has a rational linear factor. If p(x) and
q(x) are polynomials of degree m and n, then what is the degree of p(x)q(x)?

(e) To show that a number is algebraic, you need to find a rational polynomial with that number
as a root. For 1 + 3

√
2, let r = 1 + 3

√
2 so that r − 1 = 3

√
2. Now cube both sides.

(f) If p(x) has degree d and factors as the product of two polynomials of degree at least 1, then
both of these polynomials have degree less than d. Read the definition of “degree” carefully.

For uniqueness, suppose that two polynomials, p(x) and q(x), have the described properties.
What can be said about the degree of their difference?

(h) (i) Warm up by trying this with a polynomial of lower degree. It turns out that the polynomial
f1(x) is the derivative of f(x). This is not important for the problem, but it is interesting.

(ii) If you know some calculus, then there is a nice proof of this involving the product rule.
Otherwise, if f(x) = (x− r)2p(x), then f(x+ y) = [(x− r) + y]2p(x+ y). Expand p(x+ y)
and f(x+ y) as described in part (i) and compare “coefficients” of y.

(j) By definition, the shared root is algebraic and so has a minimal polynomial, m(x). Show
that each of p(x) and q(x) is a scalar multiple of m(x).

Division Algorithm for Polynomials: For polynomials f(x) and g(x) with g(x) not the
zero polynomial, there exist unique polynomials h(x) and r(x) such that

f(x) = h(x)g(x) + r(x)

where the degree of r(x) is less than the degree of g(x). This is essentially the result of doing
polynomial or synthetic division of f(x) by g(x).

(k) Convince yourself that every polynomial can be expressed as a product of irreducible poly-
nomials. As well, as long as f(x) has degree at least 1, the polynomial f1(x) is not the zero
polynomial and has degree less than that of f(x) (in fact, the degree is one less).



Problem of the Month
Solution to Problem 6: March 2024

(a) Notice that f(2) = 24 − 2(2)3 − 2(2)2 + 8 = 16 − 16 − 8 + 8 = 0, so 2 is a root of f(x).
This means (x− 2) is a factor of f(x). Factoring gives f(x) = (x− 2)(x3 − 2x− 4). Now
evaluating 23 − 2(2)− 4 = 8− 4− 4 = 0, we get that 2 is a root of x3 − 2x− 4, so (x− 2)
is a factor of x3 − 2x− 4. Factoring gives x3 − 2x− 4 = (x− 2)(x2 + 2x+ 2).

Applying the quadratic formula to x2 + 2x+ 2 gives

−2±
√

22 − 4(2)

2
=

−2±
√
−4

2
=

−2± 2i

2
= −1± i

So the roots of f(x) are 2, −1 + i, and −1− i with 2 appearing as a repeated root.

(b) This polynomial has no real roots, but notice that g(x) = x4 + 2x2 + 1 = (x2 + 1)2. The
roots of x2 +1 are ±i, so the only roots of g(x) are i and −i. In fact, g(x) can be factored
as g(x) = (x− i)2(x+ i)2 which shows that each of these two roots are repeated roots.

(c) We can use a difference of square to get that h(x) = (x2 + 2)(x2 − 2). The roots of x2 − 2
are

√
2 and −

√
2. The roots of x2 + 2 are i

√
2 and −i

√
2. Thus, h(x) has four distinct

roots (no repeated roots), two of which are real and two of which are not real.

Notation: In several of the remaining solutions, we will use the word monic to describe a
polynomial with a leading coefficient of 1. One of the main observations about monic polynomials
is that if p(x) is a polynomial with leading coefficient a ̸= 0, then 1

a
p(x) is a monic polynomial

of the same degree with exactly the same roots as p(x). We will leave the following fact as an
exercise: If p(x) is a reducible monic polynomial, then p(x) factors as the product of two monic
polynomials of degree at least 1.

(d) (i) The polynomial is irreducible. Suppose x2− 2 is reducible. Since the polynomial
is monic, there must be monic rational polynomials p(x) and q(x) of degree at least
1 such that p(x)q(x) = x2 − 2. Since p(x) and q(x) both have degree at least 1 and
their product has degree 2, they must both have degree exactly 1.

Therefore, there are rational numbers a and b such that p(x) = x+a and q(x) = x+b,
so x2− 2 = (x+a)(x+ b). Expanding, we get x2− 2 = x2+(a+ b)x+ab. Comparing
coefficients, a + b = 0 or a = −b, and ab = −2. Substituting a = −b into ab = −2
gives −b2 = −2 or b2 = 2. It is well known that no rational number b has the property
that b2 = 2, and so there is a problem. We conclude that x2 − 2 cannot be factored
into the product of two rational polynomials both with positive degree.

Observation: It is important to observe that we have specifically shown that x2 − 2
does not factor over Q. If we allow for any real coefficients, we easily get that x2−2 =
(x−

√
2)(x+

√
2) which is a perfectly good factorization into a product of polynomials

with real coefficients. Extending the language defined in the problem, we would say
that while x2 − 2 is irreducible over Q, it is reducible over R.

(ii) The polynomial is reducible. Checking for rational roots and then factoring, one
finds that x3 − 6x2 + 11x− 6 = (x− 1)(x− 2)(x− 3).
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(iii) The polynomial is irreducible. If a cubic polynomial is equal to the product of
polynomials p(x) and q(x) each with degree at least 1, then one of them must be
linear and the other must be quadratic. This is because 1 + 2 is the only way to
express 3 (the degree) as the sum of positive integers. Since x3+x+1 is monic, there
must be rational numbers a, b, and c so that x3 + x + 1 = (x + a)(x2 + bx + c). Of
course, this shows that −a is a rational root, so we get the following useful fact that
is special to cubics (and quadratics): A cubic polynomial is reducible over Q if and
only if it has a rational root.

By the rational root theorem, 1 and −1 are the only candidates for a rational root of
x3 + x+ 1. Neither is a root, so the polynomial has no rational roots. Therefore, by
the argument above, the polynomial is irreducible.

(iv) The polynomial is irreducible. Every linear polynomial is irreducible. This is
because the product of two polynomials of positive degree must have degree at least
2, so a polynomial of degree less than 2 cannot possibly be expressed as the product
of two polynomials of positive degree.

(v) The polynomial is reducible. Observe that x4+3x2+2 = (x2+1)(x2+2), and so
x4 + 3x2 + 2 can be expressed as the product of two rational polynomials of positive
degree.

The roots of the polynomial are i, −i, i
√
2 and −i

√
2, none of which are real. In part

(iii) above, it was noted that a rational cubic is irreducible over Q if and only if it
has a rational root. This example shows that this is special property of polynomials
of low degree since x4 + 3x2 + 2 is reducible, but it does not have any rational roots.

(vi) The polynomial is irreducible. If x4+1 = 0, then (x2)2 = −1, which is impossible
for a real number x. Therefore, x4+1 has no rational roots (since it has no real roots).

If x4 + 1 factors as the product of two rational polynomials of positive degree, then
it must be the product of a linear with a cubic, or the product of two quadratics.
The polynomial has no rational root, so it has no linear factor, which means the only
remaining possibility is that x4 + 1 is the product of two rational quadratics. As
mentioned earlier, if a monic polynomial factors, then it factors as the product monic
polynomials.

We will assume that a, b, c, and d are real numbers such that x4 + 1 = (x2 + ax +
b)(x2 + cx+ d) and deduce that these numbers cannot all be rational.

Expanding, we have

x4 + 1 = x4 + (a+ c)x3 + (ac+ b+ d)x2 + (ad+ bc)x+ bd

and by comparing coefficients, we get

a+ c = 0 (1)

ac+ b+ d = 0 (2)

ad+ bc = 0 (3)

bd = 1 (4)
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From Equation (1), we get a = −c and so we can substitute into Equations (2) and
(3) above to get

−c2 + b+ d = 0 (2’)

−cd+ bc = 0 (3’)

If c = 0, then Equation (2’) implies b = −d, and substituting into Equation (4) gives
−d2 = 1 or d2 = −1. This means d = i or d = −i, neither of which is rational.

If c ̸= 0, then we can divide through by c in Equation (3’) to get −d+ b = 0 or b = d.
Equation (4) now implies that b2 = d2 = 1, so either b = d = 1 or b = d = −1.

If b = d = 1, then Equation (2’) gives −c2 + 2 = 0 or c2 = 2, so c = ±
√
2. Either

way, c is irrational.

If b = d = −1, then Equation (2’) gives c2 = −2 and so c = ±i
√
2, both of which are

irrational.

We have exhausted all possibilities and deduced that at least one of a, b, c, and d
must be irrational in all cases, so we have shown that x4 + 1 cannot possibly factor
as the product of two rational quadratic polynomials.

If you look a bit more closely at the case work above, it actually shows that x4 + 1
has the following three different factorizations:

x4+1 = (x2+i)(x2−i) = (x2+
√
2x+1)(x2−

√
2x+1) = (x2−i

√
2x−1)(x2+i

√
2x−1)

but none of them are factorizations into rational polynomials.

(e) The real number
√
2 is algebraic because it is a root of the rational polynomial x2 − 2.

To find a rational polynomial to which 1+ 3
√
2 is a root, we write r = 1+ 3

√
2 and rearrange

to get r− 1 = 3
√
2. Cubing both sides, we get r3− 3r2+3r− 1 = 2. We can rearrange this

to see that r3 − 3r2 +3r− 3 = 0, which shows that r = 1+ 3
√
2 is a root of the polynomial

x3 − 3x2 + 3x− 3, which is a rational cubic.

Let α = 1 + 2i and β = 1 − 2i. Notice that α + β = 2 and αβ = (1 + 2i)(1 − 2i) =
12 − (2i)2 = 5. The polynomial (x − α)(x − β) = x2 − (α + β)x + αβ = x2 − 2x + 5, a
rational quadratic, has α = 1 + 2i as a root by construction.

For
√
2+

√
3, we will use a similar trick to that which was used for 1+ 3

√
2. Set r =

√
2+

√
3

and rearrange to get r−
√
2 =

√
3. Squaring both sides gives r2− 2

√
2r+2 = 3 which can

be rearranged to get r2 − 1 = 2
√
2r. Squaring both sides again gives r4 − 2r2 + 1 = 8r2,

which can be rearranged to r4− 10r2+1 = 0. Therefore,
√
2+

√
3 is a root of the rational

polynomial x4 − 10x2 + 1.

The degrees of
√
2, 1 + 3

√
2, 1 + 2i, and

√
2 +

√
3 are 2, 3, 2, and 4, respectively. We will

justify this at the end of the solution to part (j).

(f) Suppose α is an algebraic number of degree d. It follows from the remark before the
solution to part (d) that there is a rational monic polynomial p(x) of degree d such that
p(α) = 0.

3



Suppose p(x) is reducible over Q. Then there are rational polynomials f(x) and g(x) such
that p(x) = f(x)g(x) and both f(x) and g(x) have degree at least 1. Since the sum of the
degrees of f(x) and g(x) is d, it follows that each of them has degree less than d.

Since p(α)=0, we get 0 = f(α)g(α), and so either f(α) = 0 or g(α) = 0. This is impossible
since d is the smallest positive degree of a rational polynomial having α as a root.

This shows p(x) is irreducible, so we have shown that there exists a monic irreducible
rational polynomial of degree d with p(α) = 0.

Now we want to show that that is only one such polynomial. To do this, suppose p(x)
and q(x) are monic irreducible polynomials of degree d such that p(α) = q(α) = 0. Let
h(x) = p(x)−q(x). Since p(x) and q(x) have the same leading term, xd, the degree of h(x)
must be less than d. As well, h(α) = p(α)− q(α) = 0, so α is a root of a polynomial with
degree less than d. By the definition of d, h(x) cannot have positive degree, so it must
be constant. The only constant polynomial with roots is the constant zero polynomial, so
h(x) = p(x)− q(x) = 0 for all x, from which it follows that p(x) = q(x).

We have assumed that two monic irreducible polynomials of degree d have α as a root and
deduced that they are the same polynomial. We conclude that there is a unique monic
irreducible polynomial m(x) of degree d such that m(α) = 0.

(g) By looking for rational roots and removing corresponding factors, we arrive at

f(x) = (x+ 1)(x− 2)2(x4 + 2x2 + 1)

In part (b), it was observed that x4 + 2x2 + 1 = (x2 + 1)2, so f(x) factors completely as

f(x) = (x+ 1)(x− 2)2(x− i)2(x+ i)2

and so the values of r1, r2, r3, r4, r5, r6, r7 are −1, 2, 2, i, i, −i, −i.

(h) (i) Expanding (x+ y)n for each n from 2 through 7, we have

(x+ y)7 = x7 + 7x6y + 21x5y2 + 35x4y3 + 35x3y4 + 21x2y5 + 7xy6 + y7

(x+ y)6 = x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6

(x+ y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5

(x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

(x+ y)3 = x3 + 3x2y + 3xy2 + y3

(x+ y)2 = x2 + 2xy + y2

Substituting x+ y for x in f(x), we get

f(x+ y) = (x+ y)7 − 3(x+ y)6 + 2(x+ y)5 − 2(x+ y)4 + (x+ y)3 + 5(x+ y)2 + 4

Without actually substituting the expressions for (x+y)2 through (x+y)7 from above,
we can imagine what will happen if we do. The polynomial f0(x) is equal to the sum
of the terms we would get that have no factor of y. The only term in (x + y)n that
does not have a factor of y is xn. Therefore, we can conclude that

f0(x) = x7 − 3x6 + 2x5 − 2x4 + x3 + 5x2 + 4

4



which is f(x), the roots of which were found in the previous part.

The polynomial f1(x) has the property that yf1(x) is the sum of all terms that have
a factor of y and the exponent of y is exactly 1. In (x + y)n, this term is always of
the form nxn−1y.

Therefore, we can collect all terms that have exactly one factor of y in f(x+y) to get

yf1(x) = 7x6y − 3(6x5y) + 2(5x4y)− 2(4x3y) + (3x2y) + 5(2xy)

= y(7x6 − 18x5 + 10x4 − 8x3 + 3x2 + 10x)

So we conclude that f1(x) = 7x6 − 18x5 + 10x4 − 8x3 + 3x2 + 10x.

After checking for rational roots, one finds that f1(x) = x(x− 2)(7x4 − 4x3 + 2x2 −
4x− 5) and that h(x) = 7x4 − 4x3 + 2x2 − 4x− 5 has no rational roots. However, a
bit of experimentation or observation leads to

h(i) = 7(i)4 − 4i3 + 2i2 − 4i− 5

= 7(−1)2 − 4(−1)i+ 2(−1)− 4i− 5

= 7 + 4i− 2− 4i− 5

= 0

and one can check that h(−i) = 0 as well. Thus, we should be able to factor (x− i)
and (x + i) out of h(x), but (x − i)(x + i) = x2 + 1, so we can factor x2 + 1 out of
h(x) and avoid arithmetic with complex numbers. After doing this, we find h(x) =

(x2+1)(7x2−4x−5). Using the quadratic formula on 7x2−4x−5 gives x =
2±

√
39

7
.

We have now found all roots of f1(x) and they are 0, 2, i, −i,
2 +

√
39

7
, and

2−
√
39

7
.

Observe that 2, i, and −i were all repeated roots of f(x) (from part (g)) and they all
appear as roots of f1(x).

(ii) In general, f(x+ y) can be expressed as

f(x+ y) = f(x) + f1(x)y +X

where X is some expression that is the sum of products of scalars, powers of x, and
powers of y. However, since f(x) and f1(x)y are the collections of terms that have
no factor of y and exactly one factor of y, we can conclude that X has a factor of y2.
Therefore, we can refine this observation to get that f(x+y) = f(x)+f1(x)y+y2f(x, y)
where f(x, y) is the sum of terms that are products of scalars, powers of x, and powers
of y. Note that if f(x) is constant, then f1(x) and f(x, y) will be 0, and if f(x) has
degree 1, then f(x, y) will be 0.

Assume that r is a root of f(x).

We will first show that if r is a repeated root of f(x), then r must be a root of f1(x).
To do that, we assume that r is a repeated root of f(x). By definition, this means
there is a polynomial p(x) such that f(x) = (x− r)2p(x).

Expanding p(x+ y), we get

p(x+ y) = p(x) + p1(x)y + y2p(x, y)

5



Then we have

f(x+ y) = (x+ y − r)2p(x+ y)

= [(x− r) + y]2[p(x) + p1(x)y + y2p(x, y)]

= [(x− r)2 + 2y(x− r) + y2][p(x) + p1(x)y + y2p(x, y)]

= p(x)(x− r)2 + y[2(x− r)p(x) + p1(x)(x− r)2] + y2h(x, y)

where h(x, y) is some expression in x and y. Therefore, when we expand f(x + y),
the sum of the terms with y1 as their power of y is y[2(x − r)p(x) + p1(x)(x − r)2].
By definition, this sum also equals yf1(x), so f1(x) = 2(x − r)p(x) + p1(x)(x − r)2.
Substituting x = r into this equation gives f1(r) = 2(r − r)p(r) + p1(r)(r − r)2 = 0.
Therefore, r is a root of f1(x).

We now assume that r is a root of both f(x) and f1(x) and will deduce that (x− r)2

is a factor of f(x).

Since we are assuming that f(x) has a root of r, we can write f(x) = p(x)(x− r) for
some polynomial p(x). Then

f(x+ y) = (x+ y − r)p(x+ y)

= [(x− r) + y][p(x) + p1(x)y + y2p(x, y)]

= p(x)(x− r) + y[p(x) + (x− r)p1(x)] + y2k(x, y)

where k(x, y) is some expression in x and y. Similar to the argument for the other
direction, this implies yf1(x) = y[p(x)+(x−r)p1(x)], hence f1(x) = p(x)+(x−r)p1(x).
We are assuming that f1(r) = 0, so we can substitute x = r on both sides of this
equation to get f1(r) = p(r) + (r − r)p1(r) or 0 = p(r) + 0. Therefore, p(r) = 0,
so there is some polynomial q(x) such that p(x) = q(x)(x − r). Substituting into
f(x) = p(x)(x − r), we get f(x) = q(x)(x − r)2, and so r is a repeated root of f(x)
by definition.

A proof using calculus. If you take a minute to verify that the polynomial f1(x) is
the derivative of polynomial f(x), denoted by f ′(x), then we can reframe this result
as follows: Suppose that f(x) is a polynomial and that r is a root of f(x). Prove that
r is a repeated root of f(x) if and only if r is a root of f ′(x).

Assume that r is a root of f(x).

Suppose that r is a repeated root of f(x). Then f(x) = p(x)(x − r)2 for some
polynomial p(x). By the product rule, f ′(x) = p′(x)(x − r)2 + 2p(x)(x − r), so
f ′(r) = p′(r)(r − r)2 + 2p(r)(r − r) = 0. Therefore, r is a root of f ′(x).

Now suppose that r is a root of f ′(x). Since r is a root of f(x), there is a polynomial
p(x) such that f(x) = p(x)(x− r). By the product rule, f ′(x) = p′(x)(x− r) + p(x).
Substituting x = r gives f ′(r) = p′(r)(r−r)+p(r) and since f ′(r) = 0 by assumption,
this implies 0 = 0+ p(r), so r is a root of p(x). Therefore, there is a polynomial q(x)
such that p(x) = q(x)(x − r). Substituting gives f(x) = p(x)(x − r) = q(x)(x − r)2,
so r is a repeated root of f(x).

(j) Suppose p(x) and q(x) are irreducible rational polynomials with a root, α, in common.
Assume that p(x) had degree n. We know that α is an algebraic number, so let m(x) be
its minimal polynomial.
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By the division algorithm for polynomials, there are polynomials f(x) and r(x) such that
p(x) = f(x)m(x) + r(x) and the degree of r(x) is less than the degree of m(x). By the
definition of the minimal polynomial, m(α) = 0. By assumption, p(α) = 0, so p(α) =
f(α)m(α) + r(α) implies that 0 = 0 + r(α) or r(α) = 0. Since m(x) is the minimal
polynomial of α and the degree of r(x) is less than the degree of m(x), we must have that
r does not have positive degree. This means r(x) is constant, and since r(α) = 0, it must
be the zero polynomial1.

Therefore, p(x) = f(x)m(x), which is a factorization of p(x) into a product of two poly-
nomials. Since p(x) is irreducible and m(x) has positive degree, we must have that f(x)
is constant. Therefore, there is a constant a such that p(x) = am(x). Since p(x) is
irreducible, it has degree at least 1, so a ̸= 0.

By an essentially identical argument, there is a constant b ̸= 0 such that q(x) = bm(x).

Taking c =
a

b
, we have

cq(x) = cbm(x) =
a

b
bm(x) = am(x) = p(x)

Computing the degrees of the algebraic numbers from part (e). We can use
parts (f) and (j) to prove the following: If an algebraic number is a root of an irreducible
polynomial of degree d, then the degree of the algebraic number is d.

To see why this is true, suppose α is algebraic of degree d and is a root of an irreducible
polynomial p(x) of degree n. By part (f), the minimal polynomial, m(x), of α has degree
d. This means p(x) and m(x) are irreducible polynomials with a root, α, in common. By
part (j), one is a scalar multiple of the other (and that scalar is nonzero), so they have the
same degree. In other words, n = d.

It follows that if we are given an algebraic number α and produce an irreducible polynomial
of degree d to which α is a root, we will have shown that the degree of α is d. In part (e),
one can show that each of the four polynomials produced (for each algebraic number) is
irreducible, so the degrees of the algebraic numbers are as stated at the end of the solution
to (e).

(k) Suppose p(x) is an irreducible rational polynomial with a repeated root, α. By part (h)(ii),
α is also a root of p1(x). Note that if anx

n is the leading term of p(x), then nanx
n−1 is the

leading term of p1(x), and so p1(x) has degree strictly lower than that of p(x). As well,
p(x) has a repeated root, so n ≥ 2, which means n− 1 ≥ 1. Therefore, p1(x) has positive
degree less than n.

Every polynomial can be factored into a product of irreducible factors. To see why, we
can emulate the reasoning used to see that every positive integer is the product of prime
numbers. For example, if p1(x) is irreducible, then we stop. Otherwise, it can be factored
as p1(x) = f(x)g(x) where each of f(x) and g(x) has degree at least 1 and less than that of
p1(x). Now either f(x) and g(x) are irreducible, or they can be factored into polynomials
of lower degree. Critically, the degrees always go down but stay larger than 1 when we

1For technical reasons, mathematicians usually distinguish the zero polynomial among the constant polyno-
mials and do not consider it to have degree 0. Typically it is either not assigned a degree or assigned a “degree”
of −∞. For the purposes of this document, there is no harm in just taking the zero polynomial to have degree 0.
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factor. Consequentially, this cannot go on forever, and we will eventually be left with p1(x)
expressed as a product of irreducible polynomials.

Since p1(α) = 0, one of these irreducible factors, say h(x), has α as a root. Since h(x) is
a factor of p1(x), its degree is no larger than the degree of p1(x), which means h(x) has
degree less than n.

We now have that α is a root of both h(x) and p(x). Both polynomials are irreducible, so
part (j) implies that they must have the same degree. We have just argued that the degree
of h(x) is less than the degree of p(x), so this is a problem.

This means our assumption that p(x) has a repeated root must have been wrong, so we
conclude that an irreducible rational polynomial cannot have a repeated root.
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Problem of the Month
Problem 7: April 2024

Curves in the plane are often given as the set of points (x, y) that satisfy some equation in x and y.
For example, the set of points (x, y) that satisfy y = x2 is a parabola, the set of points (x, y) that
satisfy y = 3x + 4 is a line, and the set of points (x, y) that satisfy x2 + y2 = 1 is the circle of
radius 1 centred at the origin.

Another way to express a curve in the plane is using parametric equations. With this type of
description, we introduce a third variable, t, called the parameter, and each of x and y is given
as a function of t. This is useful for describing the position of a point that is moving around the
plane. For example, imagine that an ant is crawling around the plane. If its x-coordinate at time
t is x = x(t) and its y-coordinate at time t is y(t), then its position at time t is (x(t), y(t)).

(a) A particle’s position at time t is (x, y) = (1 + t,−2 + 2t). That is, its x-coordinate at time t
is 1 + t and its y-coordinate at time t is −2 + 2t.

(i) Plot the position of the particle at t = 0, 1, 2, 3, and 4.

(ii) Show that every position the particle occupies is on the line with equation y = 2x− 4.

(iii) Sketch the path of the particle from t = 0 through t = 4.

(b) A particle’s position at time t is (cos(t), sin(t)). Sketch the path of the particle from t = 0
through t = 2π.

(c) A particle’s position at time t is (cos(t), sin(2t)).

(i) Plot the position of the particle at t =
kπ

12
for the integers k = 0 through k = 24. Sketch

the path of the particle from t = 0 through t = 2π.

(ii) Show that every position the particle occupies is on the curve with equation
y2 = 4x2 − 4x4.

(d) Circle 1 is centred at the origin, Circle 2 is centred at (2, 0), and both circles have radius 1.
The circles are tangent at (1, 0). Circle 2 is “rolled” in the counterclockwise direction along
the outside of the circumference of Circle 1 without slipping. The point on Circle 2 that was
originally at (1, 0) (the point of tangency) follows a curve in the plane. Find functions x(t)
and y(t) so that the points on this curve are (x(t), y(t)) for 0 ≤ t ≤ 2π.



(e) The setup in this problem is similar to (d). Circle 1 is centred at the origin and has radius 2
and Circle 2 is centred at (1, 0) and has radius 1 so that the two circles are tangent at (2, 0).
Circle 2 is rolled around the inside of the circumference of Circle 1 in the counterclockwise
direction. Describe the curve in the plane followed by the point on Circle 2 that is initially
at (2, 0).

(f) Circle 1 is centred at the origin and has radius 1. Circle 2 has radius r < 1, is inside Circle 1,
and the two circles are initially tangent at (1, 0). When Circle 2 is rolled around the inside
of Circle 1 in the counterclockwise direction, the point on Circle 2 that was initially at (1, 0)
will follow some curve in the plane.

(i) Show that when r =
1

4
, the points on the curve satisfy the equation

(
3
√
x
)2
+
(

3
√
y
)2

= 1.

(ii) Show that the curves for r =
1

3
and r =

2

3
are exactly the same and that the point

initially at (1, 0) travels this curve in opposite directions for the two radii.



Problem of the Month
Problem 7: April 2024

Hint

(a) In part (ii), solve for t in terms of x and then substitute into the equation involving y.

(b) At time t, how far is the particle from the origin?

(c) Starting with y2 = (sin 2t)2, use trigonometric identities to eliminate all appearances of the
variable t. Remember that x = cos t.

(d) As Circle 2 rolls around Circle 1, let t be the angle made by the positive x-axis and the line
segment connecting the origin and the centre of Circle 2. It will help to draw a reasonably
accurate diagram with Circle 2 rolled part of the way around Circle 1 (perhaps an angle of
π

3
or so). Once you have done this, mark the point on the circumference of Circle 2 that was

originally at (1, 0) by P (or some other label). The objective is to find the coordinates of P
in terms of t. Since the circles roll without slipping, the arclength from the point of tangency
along Circle 1 to (1, 0) should equal the arclength from the point of tangency along Circle 2
to P .

(e) As Circle 2 rolls along the inside of Circle 1, it (usually) intersects the x-axis at two points.
Convince yourself that one of these two points must be the origin, then think about the other
point.

(f) Using a strategy similar to part (d), find a general formula for the coordinates of P in terms
of the angle t. Do this either in general for r or do it separately for the three relevant values
of r in this question.

(i) Find identities for cos 3t in terms of cos t and sin 3t in terms of sin t.

(ii) Find the parametric equations for the position of P when r =
1

3
if Circle 2 is rolled

clockwise around Circle 1 instead of counterclockwise.



Problem of the Month
Solution to Problem 7: April 2024

(a) (i) When t = 0, the position is (1 + 0,−2 + 2(0)) = (1,−2). When t = 1, the position is
(1+1,−2+2(1)) = (2, 0). When t = 2, the position is (3, 2), when t = 3, the position
is (4, 4), and when t = 4, the position is (5, 6). The plot of these positions is below

t = 0

t = 1

t = 2

t = 3

t = 4

(ii) For each t, we have x = 1 + t and y = −2 + 2t. Solving for t in the equation
x = 1 + t gives t = x − 1, which can be substituted into the second equation to get
y = −2 + 2(x − 1) = −2 + 2x − 2 = 2x − 4. Therefore, every point of the form
(x, y) = (t+ 1,−2 + 2t) satisfies y = 2x− 4.

(iii) From part (ii), the points that the particle occupies are all on the line with equations
y = 2x − 4. We care about the points on this line from t = 0 to t = 4 inclusive, so
the plot is just the line segment connecting (1,−2) (the point for t = 0) to (5, 6) (the
point for t = 4). The plot is below.

t = 0

t = 1

t = 2

t = 3

t = 4

(b) We have x = cos t and y = sin t, so for any position (x, y) that the particle occupies,
x2+y2 = cos2 t+sin2 t = 1. Therefore, the particle is always somewhere on the unit circle.
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Indeed, every point on the unit circle has coordinates (cos t, sin t) for exactly one real
number t with 0 ≤ t < 2π. The graph of the path of the particle is

(c) (i) In each of the three tables below, the left column contains values of t, the middle
column contains the corresponding values of cos t, and the right column contains the
corresponding values of sin 2t. Although it is not particularly difficult to write down
exact values for each of the trigonometric ratios in the table, we want to plot the
points so the values are all given rounded to three digits past the decimal point.

t cos t sin 2t

0 1 0
π
12

0.966 0.5
2π
12

0.866 0.866
3π
12

0.707 1
4π
12

0.5 0.866
5π
12

0.259 0.5
6π
12

0 0
7π
12

-0.259 -0.5

t cos t sin 2t
8π
12

-0.5 0.866
9π
12

-0.7071 -1
10π
12

-0.866 -0.866
11π
12

-0.966 -0.5

π -1 0
13π
12

-0.966 0.5
14π
12

-0.866 0.866
15π
12

-0.707 1

t cos t sin 2t
16π
12

-0.5 0.866
17π
12

-0.259 0.5
18π
12

0 0
19π
12

0.259 -0.5
20π
12

0.5 -0.866
21π
12

0.707 -1
22π
12

0.866 -0.866
23π
12

0.966 -0.5
24π
12

1 0

Below is a plot of the points above including a sketch of the curve.

(ii) Every point (x, y) on the parametric curve satisfies x = cos t and y = sin 2t for some
real number t. Using the double-angle formula for sin 2t, we get y = 2 sin t cos t,

2



so y2 = 4 sin2 t cos2 t. By the Pythagorean identity, 1 − x2 = 1 − cos2 t = sin2 t.
Substituting gives y2 = 4(1− x2)x2 = 4x2 = 4x4.

(d) We will label the point on Circle 2 that is originally at (1, 0) by P and we will label the
centre of Circle 2 by Q. Since the circumferences of the circles are the same, Circle 2 will
return to its original position after rolling exactly once around Circle 1. This means Q will
travel exactly once around the circle of radius 1 + 1 = 2 centred at the origin.

We will let t represent the angle made by the positive x-axis and the ray from the origin

to Q. For example, the diagram below depicts the position of the outer circle when t =
π

3
.

The origin is labelled by O.

Q

P
t

O

We wish to find the coordinates of P in terms of the angle t. In the diagram below, we have
added to the previous diagram a line through the origin and Q, a line segment connecting
Q to P , as well as a horizontal line through Q. The horizontal line intersects Circle 2 at
R to the right of Q. The line through O and Q intersects the point of tangency of the
two circles at T and it also intersects Circle 2 at S (the points S and T are different). A
perpendicular has also been drawn from P to QR intersecting QR at U .

Q

P

R

S

t

t

O

T

U

The line connecting the centres of tangent circles always passes through the point of tan-
gency, which justifies the implicit claim in the previous paragraph that OQ passes through
the point of tangency. It also implies that the length of OQ is 1 + 1 = 2. Therefore, the
coordinates of Q are (2 cos t, 2 sin t). Since QR is horizontal by construction, QR is parallel

3



to the x axis, which implies ∠SQR = t.

Because Circle 2 is rolling along Circle 2 without slipping, the arc from T to the x axis
along Circle 1 has the same length as the arc TP . This means ∠TQP = t as well since
the two circles have the same radius. Since TQS is a line, we get that ∠RQP = π − 2t.

Suppose Q has coordinates (q1, q2) and P has coordinates (p1, p2). The radius of Circle 2
is 1, so QP = 1. This means p1 − q1 = cos(π − 2t) and q2 − p2 = sin(π − 2t). Thus,

(p1, p2) =
(
q1 + (p1 − q1), q2 − (q2 − p1)

)
=

(
2 cos t+ cos(π − 2t), 2 sin t− sin(π − 2t)

)
= (2 cos t− cos 2t, 2 sin t− sin 2t)

where the last equality is by trigonometric identities. Therefore, x(t) = 2 cos t− cos 2t and
y(t) = 2 sin t− sin 2t. A plot of this curve is given below.

(e) As Circle 2 rolls around the inside of Circle 1, if a line is drawn through the point of
tangency perpendicular to the mutual tangent, then the line will pass through the centre
of both circles. Such a line contains a diameter of both circles, and since the radius of
Circle 1 equals the diameter of Circle 2, the centre of Circle 1 is always on Circle 2. In

the diagram below, Circle 2 has been rotated by some positive angle between 0 and
π

2
.

The origin is labelled by O, the current point of tangency is labelled by R, the centre of
Circle 2 is labelled by Q, the other point at which Circle 2 intersects the x-axis is labelled
by P , and (2, 0) is labelled by S.

O P

Q

R

S
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We wish to determine the current location of the point on Circle 2 that started at S.
Circle 2 does not slip as it rolls, so this point is the same distance from R in the clockwise
direction along both circles.

Since O is on the circumference of Circle 2 and Q is the centre of Circle 2, a well-known
circle property implies that ∠PQR = 2∠POR. The radius of Circle 1 is 2, so provided we
measure angles in radians, the length of the arc PS is 2∠POR. The radius of Circle 2 is
1, so the length of arc PR is ∠PQR. These quantities are equal, so the arcs PR and PS
have equal length. Therefore, the original point of tangency is at P .

By drawing similar diagrams for obtuse and reflex angles, it can be similarly shown that
the original point of tangency is always on the diameter of Circle 1. Now note half the
circumference of Circle 1 is equal in length to the circumference of Circle 2, so when Circle 2
has rolled exactly half way around Circle 1, the original point of tangency is exactly where
Circle 1 intersects the negative x-axis. It follows by symmetry that the original point of
tangency will go from (2, 0) to (−2, 0) and back to (2, 0) as Circle 2 rolls around Circle 1.

(f) We will first work out, in general, a pair of parametric equations for P , the original point
of tangency. As in part (d), O is the origin, Q is the centre of Circle 2, and the measure of
the angle made by the positive x-axis and the ray from O to Q is t. In the diagram below,
a horizontal line is drawn through Q intersecting Circle 2 at R to the right of Q and the
line defined by OQ, for the same reasoning that was used in part (d), passes through the
mutual point of tangency labelled by S. We label (1, 0) by T .

t

t

O

RQ

P

S

θ

T

As mentioned, O, Q, and S are on a line, and so OQ = OS −QS = 1− r. Therefore, the
coordinates of Q are

(
(1− r) cos t, (1− r) sin t

)
. If we let θ be ∠PQR, then by reasoning

similar to that which was used in part (d), the coordinates of P are

((1− r) cos t+ r cos θ, (1− r) sin t− r sin θ)

For now, assume that t is small enough that Circle 2 has not yet rolled far enough for P
to have returned to the circumference of Circle 1. The length of arc SP on Circle 2 is

5



equal to the length of arc ST on Circle 1, which is equal to t since the radius of Circle 1 is
1 (provided we use radians as our unit of angle measure). Because QR is parallel to OT ,
∠SQR = ∠SOT = t, so ∠SQP = t + θ (note that this angle is measured clockwise from
S, so in the diagram, the angle measures more than π radians). The radius of Circle 2 is
r, so the length of arc SP is r(t+ θ). The arcs ST and SP are equal, so t = rt+ rθ, which

can be solved for θ to get θ =
t− tr

r
, and we note that 0 < r < 1, so t− tr is positive.

Now suppose that t is such that P has already returned to Circle 1 k times. Between
consecutive times that P returns to Circle 1, the arc ST increases in length by 2πr,
the circumference of Circle 2. Therefore, instead of the equation t = rt + rθ, we get
t = rt+ rθ + 2πrk since the arc length from S to T is still t, but to get equality, we need
to account for the k complete revolutions of Circle 2.

Solving this equation for θ gives θ =
t− rt− 2πrk

r
=

t− rt

r
−2πk. However, since we will

be taking sin and cos of θ, we can ignore the quantity 2πk since k is an integer. Therefore,
the coordinates of P when Q makes an angle of t with the positive x-axis are(

(1− r) cos t+ r cos

(
t− tr

r

)
, (1− r) sin t− r sin

(
t− tr

r

))

Before answering the given questions, we note that if r =
1

2
, (that is, the radius of Circle 2

is twice that of Circle 1), then the coordinates simplify to (cos t, 0), meaning the point P
always has a y-coordinate of 0. This gives another proof of the result in (e).

(i) When r =
1

4
, the coordinates of P are(

3

4
cos t+

1

4
cos(3t),

3

4
sin t− 1

4
sin(3t)

)
Using standard trigonometric identities, one can show that cos(3t) = 4 cos3 t− 3 cos t
and sin(3t) = 3 sin t− 4 sin3 t. Substituting into the coordinates above, we get

x(t) =
1

4
(3 cos t+ cos(3t)) y(t) =

1

4
(3 sin t− sin(3t))

=
1

4
(3 cos t+ 4 cos3 t− 3 cos t) =

1

4
(3 sin t− 3 sin t+ 4 sin3 t)

= cos3 t = sin3 t

leading to the rather tidy expression for the coordinates of (cos3 t, sin3 t). Therefore,
3
√
x = cos t and 3

√
y = sin t, so ( 3

√
x)2 + ( 3

√
y)2 = cos2 t+ sin2 t = 1.

(ii) For r =
1

3
, we get

x(t) =
2

3
cos t+

1

3
cos(2t) y(t) =

2

3
sin t− 1

3
sin(2t)

=
1

3
(2 cos t+ cos 2t) =

1

3
(2 sin t− sin 2t)
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For r =
2

3
, we get

x(t) =
1

3
cos t+

2

3
cos

(
t

2

)
y(t) =

1

3
sin t− 2

3
sin

(
t

2

)
=

1

3

(
cos t+ 2 cos

t

2

)
=

1

3

(
sin t− 2 sin

t

2

)
Focusing for a moment on the equations for r =

2

3
, if we substitute t = 2π, we get

x(2π) = −1

3
and y(2π) = 0, which means the point initially at (1, 0) on Circle 2 has

not returned to its original position yet. This is because the circumference of Circle 1
is not an integer multiple of the circumference of Circle 2. Indeed, the circumference

of Circle 1 is 2π, but the circumference of Circle 2 is
4π

3
.

When Circle 2 first reaches the point where it is tangent to Circle 1 at (1, 0), some
points on Circle 2 have been tangent to Circle 1 more than once. To be precise,

2π − 4π

3
=

2π

3
, so every point on Circle 2 has been tangent to Circle 1 at least once,

but the points on an arc of length
2π

3
on Circle 2 have been tangent to Circle 1 twice.

Specifically, since 2 × 2π

3
=

4π

3
, exactly half of the points on Circle 2 have been

tangent to Circle 1 twice and the rest have been tangent once.

If Circle 2 rolls around Circle 1 again, then half the points on Circle 2 will be tangent
to Circle 1 exactly twice, and the other half will be tangent exactly once. This gives

a total of three times for each point. Indeed, 3
4π

3
= 4π = 2(2π), so three times

the circumference of Circle 2 is an integer multiple of the circumference of Circle 1.
Therefore, P returns to (1, 0) for the first time when the circumference of Circle 2
wraps around the inside of the circumference of Circle 1 exactly 2 times.

Algebraically, if we substitute t = 4π, we get x(4π) = 1 and y(4π) = 0, so the curve

for r =
2

3
is travelled periodically every two times Circle 2 rolls along Circle 1.

To avoid confusion, we will refer to the circle with r =
1

3
as Circle 3 and the circle

with r =
2

3
as Circle 2. The circumference of Circle 1 is an integer multiple of the

circumference of Circle 3, so point P reaches (1, 0) after Circle 3 rolls around Circle
1 exactly once.

Suppose the centre of Circle 3 revolves around the origin at a rate of 1 radian per
second and the centre of Circle 2 revolves around the origin at a rate of 2 radians per
second. By assuming this, we will have that both circles take exactly 2π seconds for
P to return to its original position for the first time.

If Circle 3 is instead rolled clockwise around Circle 1, then the position of P will be

(x(2π−t), y(2π−t)) where x(t) and y(t) are as given for r =
1

3
above. This is because,

for example, point P is in the same position after rolling
π

3
radians counterclockwise
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as it would be if it had rolled 2π − π

3
radians clockwise. Thus, if Circle 3 rotated

clockwise instead of counterclockwise, its position at time t is given by (x(t), y(t))
where

x(t) =
1

3
(2 cos(2π − t) + cos(2(2π − t)) y(t) =

1

3
(2 sin(2π − t)− sin(2(2π − t))

=
1

3
(2 cos t+ cos(2t)) =

1

3
(−2 sin t+ sin 2t)

=
1

3
(cos 2t+ 2 cos t) =

1

3
(sin 2t− 2 sin t)

If Circle 2 is rotated counterclockwise (as before) at 2 radians per second, then at
time t the angle is 2t, and so the coordinates of P are

x(t) =
1

3

(
cos 2t+ 2 cos

2t

2

)
y(t) =

1

3

(
sin 2t− 2 sin

2t

2

)
=

1

3
(cos 2t+ 2 cos t) =

1

3
(sin 2t− 2 sin t)

which are the exact same coordinates as Circle 3 at time t. Of course, if Circle 3 is
rotated clockwise, then it travels the same path as if it were rotated counterclock-
wise but in the opposite direction. Thus, if both Circle 2 and Circle 3 are rotated
counterclockwise, then P travels the same path in opposite directions.
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Problem of the Month
Problem 8: May 2024

This month’s problem is an extension of Question 4 from the 2024 Galois contest. It is not necessary
to try the problem before attempting the questions below.

In an m × n rectangular grid, we say that two cells are neighbours if they share an edge. The
neighbourhood of a cell is the cell itself along with its neighbours.

An m × n grid is called a Griffin Grid if each of its mn cells contains either a 1 or a −1 and the
integer in every cell is equal to the product of the other integers in its neighbourhood.

For example, the 4×9 grid below is a Griffin Grid. The three shaded regions are the neighbourhoods
of the cells in Row 1 and Column 1, Row 1 and Column 8, and Row 4 and Column 4.

−1

1

−1

−1

−1

1

1

1

1

−1

−1

−1

1

1

−1

1

1

1

1

1

1

1

−1

1

1

−1

−1

−1

−1

1

1

1

−1

1

−1

−1

The Galois problem restricted this definition to m = 3. Here we want to explore what happens
more generally. If a question is marked with an asterisk (∗), it means I was unable to solve it.
Solutions will not be provided for these problems, but I would love to hear if you solve one!

(a) Show that an m× n grid with −1 or 1 in every cell is a Griffin Grid if and only if the cells
in every neighbourhood have a product of 1.

(b) For every n, determine the number of 2×n, 3×n, and 4×n Griffin Grids. Determining the
number of 3× n Griffin Grids in general is essentially what is required to answer part (c) of
the Galois question.

(c) Show that the number of m × n Griffin Grids is of the form 2k for some integer k with
0 ≤ k ≤ m.

(d)* For general m, determine for which k there exists n with the property that the number of
m× n Griffin Grids is exactly 2k.

(e) Show that for all m there exist infinitely many n for which there is exactly one m×n Griffin
Grid.

(f) Show that for all m there exist infinitely many n for which there are 2m distinct m×n Griffin
Grids.

(g)* Find a simple general way to calculate the number of m× n Griffin Grids.

https://www.cemc.uwaterloo.ca/contests/past_contests/2024/2024GaloisContest.pdf


Problem of the Month
Problem 8: May 2024

Hint

(b),(c) Once the m integers are placed in the leftmost column of a Griffin Grid, the rest of the
integers in the grid are uniquely determined.

The definition of a Griffin Grid can be extended to infinite grids. It is useful to consider the
infinite (in one direction) grid with m rows and infinitely many columns numbered 1, 2, 3,
and so on indefinitely. In such an infinite Griffin Grid, the first k columns form an m × n
Griffin Grid if and only if the (n+ 1)st column consists entirely of 1s.

Instead of filling in the infinite grid with −1s and 1s, fill the first column with variables, then
start to fill in the grid in general. Keep in mind that the only values that the variables will
ever take is −1 and 1, so you can assume that every variable squares to 1. For example, if
m = 2 and the variables are a (in the top cell) and b (in the bottom cell), then both variables
in the second column are ab, the third column is identical to the first column, and the fourth
column has 1 in both cells. Using the observation at the end of the previous paragraph, the
number of m× n Griffin Grids is always equal to the set of solutions to a very specific type
of system of equations.

(e),(f) Use the same approach as is outlined for part (c) above. You want to show that there are
always lots of columns that give rise to systems of equations that have many solutions and
lots that give rise to systems with very few solutions. For example, if the (n + 1)st column
(in the general grid with variables) consists entirely of 1s, then there are 2m different m× n
Griffin Grids.



Problem of the Month
Solution to Problem 8: May 2024

(a) Suppose an m×n grid with a 1 or −1 in every cell is a Griffin Grid. Consider an arbitrary
cell C and suppose it contains the integer a (so a = 1 or a = −1). Let b be the product of
the integers in the neighbours of C. Since the grid is a Griffin Grid, we have a = b. The
product of the integers in the neighbourhood of C is ab = a2 = 1, since 12 = (−1)2 = 1.

Now suppose an m × n grid has a 1 or a −1 in every cell and that the product of the
integers in every neighbourhood is 1. Let C be an arbitrary cell, let a be the integer in C,
and let b be the product of the integers in the neighbours of C. To verify that the grid is
a Griffin Grid, we need to show that a = b.

We are assuming that ab = 1, and we know that a = ±1 and b = ±1 because it is the
product of some integers, all of which are either 1 or −1. If a and b were different, then
their product would be −1, not 1. Therefore, a = b.

(b) Using similar reasoning to that which was used in part (a), it can be shown that an m×n
grid with 1 or −1 in every cell is a Griffin Grid if and only if for every neighbourhood in
the grid, the integer in each cell in the neighbourhood is equal to the product of the other
cells in that neighbourhood.

In any 2 × n grid with 1 or −1 in every cell, there are only four possibilities for the first
column. They are shown below

1

1

1

−1

−1

1

−1

−1

As suggested in the hint, we will now try to understand Griffin Grids with 2 rows and
infinitely many columns. We will refer to such a grid as a 2×∞ Griffin Grid.

The second column can be completely determined from the first column using the ob-
servation at the beginning of this part of the solution. Specifically, consider the two
neighbourhoods highlighted below:

· · · · · ·

In both of these three-cell neighbourhoods, the integer in the second column is equal to
the product of the integers in the first column. Thus, for each of the four possible first
columns, we can compute the second column as follows:

1

1

1

1
· · ·

1

−1

−1

−1
· · ·

−1

1

−1

−1
· · ·

−1

−1

1

1
· · ·
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From here, we can see that there is exactly one 2 × 2 Griffin Grid. This is because there
are only four possible ways to fill in the first column, and if a 2× 2 grid is to be a Griffin
Grid, then its second column must be filled in according to the appropriate grid above. If
we imagine “chopping off” the first two columns of the infinite grids above, only the first
of the four 2× 2 grids gives a Griffin Grid.

Continuing in this way, we can examine 2× 3 Griffin Grids by filling in the next column.
This can be done using the neighbourhoods shown below.

· · · · · ·

Similar to before, the integers in these neighbourhoods that are in the third column are
equal to the product of the integers (in the respective neighbourhood) in the first two
columns. Thus, if the cells in the first two columns contain the integers a, b, c, and d, as
shown, then the cells in the third column are as shown.

· · ·
a

b

c

d

acd

bcd

However, we can simplify this a little bit. From earlier, we know that c = d = ab. As well,
a2 = b2 = c2 = d2 = 1 since each of the variables a, b, c, and d can only take the values
1 and −1. Therefore, acd = a(ab)(ab) = aa2b2 = a and bcd = b(ab)(ab) = ba2b2 = b. We
now have the following simpler and completely general version of the first three columns
of a 2×∞ Griffin Grid.

· · ·
a

b

ab

ab

a

b

In the same way that the third column was computed from the first and second columns,
we can compute the fourth column from the second and third columns. After doing this,
we get the diagram below. There is a thick vertical line separating the first three columns
from the rest of the 2×∞ grid.

· · ·
a

b

ab

ab

a

b

1

1

Consider the six cells to the left of the thick line as a 2× 3 grid. The four integers in the
first two columns are equal to the products of their neighbours by construction. Denote by
C the cell in the first row and the third column. The integer in C is a. By construction,
the 1 to its right has been chosen so that the product of the neighbourhood of C, including
the 1 to its right, is 1. However, this means the product of the cells in its neighbourhood
that are to the left of the vertical line is also equal to 1 (since 1 divided by 1 is 1). These
three cells (left of C, below C, and C itself) contain integers that have a product of 1.
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A similar argument can be used on the cell below C to confirm that the 2× 3 grid to the
left of the thick line is a Griffin Grid. This is completely independent of the choice of a
and b. There are two possibilities for each of a and b, so there are 2× 2 = 4 Griffin Grids
of size 2× 3. They are

1

1

1

1

1

1

1

−1

−1

−1

1

−1

−1

1

−1

−1

−1

1

−1

−1

1

1

−1

−1

This approach can be generalized to determine the number of 2 × n Griffin Grids. To
explain this, we first continue to fill out a few more columns in the 2 ×∞ grid. We will
call the Griffin Grid filled in by starting with variables in the first column and letting them
propagate in the way described above the 2×∞ variable Griffin Grid.

a

b

ab

ab

a

b

1

1

a

b

ab

ab

a

b

1

1

a

b

ab

ab
· · ·

By similar reasoning to before, the first n columns of a 2×∞ Griffin Grid will form a 2×n
Griffin Grid exactly when both integers in the (n+1)st column equal 1. If we examine the
2×∞ variable Griffin Grid, the number of ways to assign values to a and b so that both
integers in the (n+ 1)st column are 1 will be equal to the number of 2× n Griffin Grids.

For example, to count the 2 × 5 Griffin Grids, we look at the 6th column of the 2 × ∞
variable Griffin Grid. Both cells contain ab. Thus, the first five columns form a 2 × 5
Griffin Grid if and only if ab = 1. This happens when a = b = 1 and when a = b = −1, so
there are exactly two 2× 5 Griffin Grids. Similarly, to count 2× 4 Griffin Grids, we count
the number of ways to choose a and b so that the 5th column of the 2×∞ variable Griffin
Grid contains only 1. The 5th column contains a and b, so we get a 2× 4 Griffin Grid only
when a = b = 1. Thus, there is exactly one 2× 4 Griffin Grid.

Now notice that the columns of the 2×∞ variable Griffin Grid appear to repeat. Indeed,
since each column after the second is computed from the previous two columns, as soon
as a pair of two consecutive columns appears for a second time, the columns must repeat.
The first and second columns are identical to the fifth and sixth columns, so the columns
in the 2×∞ variable Griffin Grid must repeat with period 4. This means the number of
2× n Griffin Grids is always the same as the number of 2× (n+ 4) Griffin Grids.

The number of 2×1 Griffin Grids is 2 (this can be seen using the method described above).
The number of 2×2 Griffin Grids is 1 (this was noted earlier but can also be checked using
the method described above). The number of 2× 3 Griffin Grids is 4, and the number of
2× 4 Griffin Grids is 1. This repeats, so we get the following:

(i) If n is even, then there is only one 2× n Griffin Grid.

(ii) If n is one more than a multiple of 4, then there are two 2× n Griffin Grids.

(iii) If n is three more than a multiple of 4, then there are four 2× n Griffin Grids.

As with 2 × n Griffin Grids, we can fill in the 3 × ∞ variable Griffin Grid starting with
a, b, and c in the first column. As before, we can assume a2 = b2 = c2 = 1. Filling out
subsequent columns until we see a repetition, we get

3



a

b

c

ab

abc

bc

ac

1

ac

bc

abc

ab

c

b

a

1

1

1

c

b

a

bc

abc

ab

ac

1

ac

ab

abc

bc

a

b

c

1

1

1

a

b

c

ab

abc

bc

· · ·

To determine the number of 3×1 Griffin Grids, we need to find all ways to choose a, b, and
c so that the integers in the second column are all 1. In other words, we need all solutions
to the system of

ab = 1

abc = 1

bc = 1

where a, b, and c are all ±1.

The equations ab = 1 and abc = 1 can be multiplied to get ababc = 1 or a2b2c = 1, so c = 1.
We can multiply this equation by bc = 1 to get bc2 = 1 or b = 1. Finally, multiplying
bc = 1 by abc = 1 gives ab2c2 = 1 so a = 1. This method of solving probably seems
unnecessarily complicated, but it generalizes nicely. We have shown that the only solution
to the system is a = b = c = 1. Therefore, there is only one 3× 1 Griffin Grid.

To determine the number of 3× 2 Griffin Grids, we need to count the number of ways to
choose a, b, and c to each be ±1 so that the entries in the third column are all 1. The
middle integer is always 1, so this cell is 1 regardless of how a, b, and c are chosen. The
other two equations are both ac = 1, so this time the number of Griffin Grids is equal to
the number of solutions to the system with just the equation ac = 1, where a, b, and c
must all be ±1.

This system does not restrict b beyond b = ±1. For ac = 1, we need either a = c = 1 or
a = c = −1. This means there are 2×2 = 4 solutions (2 choices for b and two independent
choices for the equal value of a and c). There are four 3× 2 Griffin Grids.

Continuing in this way, we can count the number of Griffin Grids of size 3 × n for n = 1
through n = 12. After that the number of Griffin Grids repeats with period 12. The
number of 3× n Griffin Grids are summarized in the table below.

n # of 3× n Griffin Grids

1, 3, 4, 6, 7, 9, 10, or 12 more than a multiple of 12 1
2 or 8 more than a multiple of 12 4
5 or 11 more than a multiple of 12 8

Finally, we leave as an exercise that the number of Griffin Grids of size 4× n is 16 if n is
a multiple of 4 and 1 otherwise.

(c) Suppose x1, x2, . . . , xk are variables and P1, P2, . . .Pr are each the product of some of the
xi. By convention, we consider a single variable to be a product. For example, it might be
that P3 = x9. We will also allow the Pi to be 1, the so-called “empty product”. We will
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show that the number of solutions to the system

P1 = 1

P2 = 1

...

Pr = 1

is a power of 2, provided each xi is restricted to the values 1 and −1. Since each xi = ±1,
we have that x2

i = 1, so we can assume that no equation mentions a variable more than
once. Following the work from part (b), the number of m×n Griffin Grids is always equal
to the number of solutions to such a system of equations, so this will prove that the number
of Griffin Grids is always a power of 2.

The key observation is the following: For any i with 1 ≤ i ≤ r, the system of equations
above has the exact same set of solutions as the system

P1 = 1

P2 = 1

...

Pi−1 = 1

P1Pi = 1

Pi+1 = 1

...

Pr = 1

That is, if we modify the system by multiplying one equation by another equation, the so-
lution set does not change. To see why this is true, we first suppose that (x1, x2, . . . , xm) =
(c1, c2, . . . , cm) is a solution to the original system. Every equation in the second sys-
tem appears in the original system except P1Pi = 1, so all equations in the second sys-
tem except P1Pi = 1 are automatically satisfied by the choice of the xi. By assump-
tion, P1 = 1 and Pi = 1, so we also have P1Pi = 1 as well. We have confirmed that
(x1, x2, . . . , xm) = (c1, c2, . . . , cm) is a solution to the second system.

A nearly identical argument shows that a solution to the second system is also a solution
to the first system, proving that the two systems have the exact same set of solutions.

We will now prove that the number of solutions is a power of 2 by induction on k, the
number of variables.

If k = 1, then the only possible equations are x1 = 1 and 1 = 1. If x1 = 1 appears,
then there is one solution. If x1 = 1 does not appear, then all equations are 1 = 1, so
the equations to not restrict the value of x1 beyond x1 = 1 and x1 = −1. Therefore, the
number of solutions is either 1 or 2, both of which is a power of 2.

Now suppose the number of solutions to such a system of equations in at most k − 1
variables is always a power of 2.

Consider a system of equations in k variables, x1 through xk. If it happens to be that
none of the equations mention xk, then the system can be viewed as having at most k− 1
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variables. By induction, the number of solutions to this system (with xk ignored) is a
power of 2. That is, the number of ways to choose values of x1 through xk−1 so that the
equations are all satisfied is 2d for some non-negative integer d.

Since xk is not mentioned in the equations, every one of these 2d solutions allows us to
choose xk = 1 or xk = −1. Therefore, the system has 2× 2d = 2d+1 solutions.

Now suppose xk appears in at least one equation. By possibly reordering the equations,
we can assume that P1 = 1 mentions the variable xk. Consider the system

P1 = 1

Q2 = 1

Q3 = 1

...

Qr = 1

where Qi = Pi if Pi does not mention xk, and Qi = P1Pi if Pi mentions xk. In other words,
equations from P2 through Pr that mention xk get multiplied by P1 and the others are left
alone. From earlier, the new system has the same solutions as the original system.

If Pi mentions xk, then it must mention it exactly once. This means the equation Qi = 1
mentions xk exactly twice, but these occurrences can be deleted since x2

k = 1.

The point is that we have converted the given system to a new system that has the same
solution set and P1 = 1 is the only equation that mentions xk. Now consider the system

Q2 = 1

Q3 = 1

...

Qr = 1

which does not mention xk. By induction, the number of solutions to this system is 2d for
some non-negative integer d. Each such solution to this smaller system is an assignment
of values to the variables x1 through xk−1. Once these values are chosen, the equation
P1 = 1, which mentions xk, will determine the value of xk.

Therefore, the number of solutions to the original system is 2d. Using induction, we
have now shown that the number of solutions to any system of this type is a power of 2.
Therefore, the number of m× n Griffin Grids is always a power of 2.

Finally, note that the system arising from the m×∞ variable Griffin Grid always has m
variables. There are at most 2m ways to assign a value of 1 or −1 to each variable, so the
number of solutions must be a power of 2 that is at most 2m.

(e) Once again, we imagine filling in the m×∞ variable Griffin Grid starting with variables
a1, a2, . . . , am in the first column.

Every cell in the grid contains either 1 or the product of some of a1 through am, where each
variable appears at most once in such a product. There are exactly 2m possible expressions
that can go in the cells. In any two consecutive columns, there are 2n cells, which means
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there are (2m)2n = 22mn possible ways that the 2n cells in two consecutive columns can be
filled. In practice, not all of these possibilities will actually occur.

Among the first 22mn + 2 columns, there are 22mn + 1 pairs of consecutive columns, which
means there must be two pairs of consecutive columns that are identical.

Since there are two identical pairs of consecutive columns, we can choose the earliest ones.
More precisely, let i be the smallest positive integer such that there is j > i with the
property that the ith column equals the jth column and the (i + 1)st column equals the
(j + 1)st column.

Suppose that i > 1. Let P1, P2, . . . , Pm the products in column i− 1 let Q1, Q2, . . . , Qm

be the products in column i, and let R1, R2, . . . , Rm be the products in column i+ 1.

By construction, we have that R1 = P1Q1Q2 (after possibly removing the squares of some
variables). This equation can be multiplied on both sides by Q1Q2 to get the equation
R1Q1Q2 = P1(Q1)

2(Q2)
2. Since the square of every variable in Q1 and Q2 is 1, we also

have (Q1)
2 = (Q2)

2 = 1, so P1 = Q1Q2R1.

We also have that R2 = P2Q1Q2Q3, and it similarly follows that P2 = Q1Q2Q3R2.

Continuing in this way, we get that each Pi can be computed in terms of the Qi and Ri.
In other words, column i− 1 can be computed directly from columns i and i+ 1.

Because of our assumptions about i and j, it follows that column i − 1 must be equal to
column j − 1. However, this means columns i− 1 and i are identical to columns j − 1 and
j, which contradicts the minimality of i.

We conclude that i > 1 is impossible, so it must be that i = 1 which means column j
equals column 1 and column j + 1 equals column 2.

Therefore, the products in column j are all single variables, and in fact, they are the
variables a1, a2, . . . , am in order from top to bottom. The only way to assign the variables
so that the entire column contains 1 is to set a1 = 1, a2 = 1, and so on to am = 1.
Therefore, there is exactly one m× (j − 1) Griffin Grid.

(f) Most of the work was done in part (e). Let’s assume that column j > 1 equals column 1
and column j+1 equals column 2. Thus, we are assuming that the entries in column j are
a1, a2, . . . , am from top to bottom and that the entries in column j + 1 are a1a2, a1a2a3,
a2a3a4, . . . , am−2am−1am, am−1am from top to bottom.

Suppose that P1, P2, . . . , Pm are the products in column j−1. The top cell in column j+1
contains a1a2 since column j + 1 equals column 2. The expression must also be a1a2P1 by
the way the m×∞ variable Griffin Grid is filled in. From a1a2 = a1a2P1, we get P1 = 1.

Looking at the second cell in column j+1, we have that it is equal to a1a2a3, but it is also
equal to P2a1a2a3, and so P2 = 1.

Continuing in this way, we get that every entry in column j − 1 equals 1. Since any
assignment of values to a1, a2, . . . , am will lead to column j− 1 having all 1s, we conclude
that there are 2m Griffin Grids of size m× (j − 2). As a final note, observe that column 1
and column 2 always (for every m) contain products that are not equal to 1, so we know
that j − 1 > 2, from which it follows that j − 2 > 1. This means we do not need to worry
about the possibility that j − 2 = 0.
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