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Part A

1. Solution 1
Evaluating,

√
102 + 2 · 10 · 11 + 112 =

√
100 + 220 + 121 =

√
441 = 21.

Solution 2
Since x2 + 2xy + y2 = (x + y)2, then

√
102 + 2 · 10 · 11 + 112 =

√
(10 + 11)2 =

√
212 = 21

Answer: 21

2. Label the shorter tree as AB and the taller tree as CD, as shown.
Draw a horizontal line from A to P on CD.

24 m

10 m

5 m 5 m

A

B

C

D

P

Since AB and PD are vertical and AP and BD are horizontal, ABDP is a rectangle which
means that PD = 5 m and AP = 24 m.
Since CD = 15 m and PD = 5 m, then CP = CD − PD = 10 m.
By the Pythagorean Theorem,

AC =
√
AP 2 + CP 2 =

√
(24 m)2 + (10 m)2 =

√
676 m2 = 26 m

since AC > 0.

Since the bird flies 26 m at 4 m/s, its time to complete the flight is
26 m

4 m/s
= 6.5 s.

Answer: 6.5 s

3. Since Team Why had scored 3 goals at the end of the game, then y ≤ 3.
Since Team Zed had scored 2 goals at the end of the game, then z ≤ 2.
Therefore, 0 ≤ y ≤ 3 and 0 ≤ z ≤ 2.
The only additional restriction is that y and z are both integers.
Thus, there are 4 possible values for y and 3 possible values for z, which means that there are
4 · 3 = 12 possible pairs (y, z).
These pairs are

(y, z) = (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2)

These pairs correspond to the possible scores at half-time.

Answer: 12
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4. We are told that a, b, c, d are positive integers with abc = d and d ≤ 8.
We determine the number of possible quadruples (a, b, c, d) by looking at each possible value
of d.

If d = 1, then abc = 1. Since a, b, c are positive integers, then a = b = c = 1. This means that
there is 1 quadruple in this case, namely (1, 1, 1, 1).

If d = 2, then abc = 2. Since 2 is prime, then one of a, b and c equals 2 and the other two
variables equal 1.
This gives 3 quadruples: (a, b, c, d) = (2, 1, 1, 2), (1, 2, 1, 2), (1, 1, 2, 2).
Similarly, when d = 3, d = 5 and d = 7 (the other possible prime values of d), there are 3
quadruples.

If d = 4, then abc = 4. We need to determine the ways in which 4 can be factored as the
product of three positive integers.
These ways are 1 · 1 · 4 = 4 and 1 · 2 · 2 = 4.
In each case, there are 3 ways to arrange the factors on the left side, which are the possible
values of a, b and c:

1 · 1 · 4 = 1 · 4 · 1 = 4 · 1 · 1 = 4

1 · 2 · 2 = 2 · 1 · 2 = 2 · 2 · 1 = 4

Thus, there are 6 quadruples in this case.

If d = 6, then abc = 6. The possible factorizations of 6 into three positive factors are 1 ·1 ·6 = 6
and 1 · 2 · 3 = 6.
In the first case, there are again 3 quadruples.
In the second case, there are 6 ways of arranging the factors:

1 · 2 · 3 = 1 · 3 · 2 = 2 · 1 · 3 = 2 · 3 · 1 = 3 · 1 · 2 = 3 · 2 · 1 = 6

Thus, if d = 6, there are 9 quadruples.

If d = 8, then abc = 8. The possible factorizations of 8 into three positive factors are 1 ·1 ·8 = 8
and 1 · 2 · 4 = 8 and 2 · 2 · 2 = 8.
These cases give 3, 6 and 1 quadruples, for a total of 10.

Combining all of the cases, there are 1 + 3 + 3 + 3 + 3 + 6 + 9 + 10 = 38 quadruples.

Answer: 38
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5. We use coordinate geometry.
Suppose that F is the origin and E lies on the positive x-axis.
The coordinates of F are (0, 0). Since FE = 6, the coordinates of E are (6, 0).
Next, we find the coordinates of B.
We note that FA = AB = 2.
Since the six interior angles of hexagon ABCDEF are equal, then the measure of each is equal
to 1

6
· 720◦ = 120◦. (The sum of the measures of the interior angles of any hexagon is 720◦.)

This means that 4FAB is isosceles with FA = AB = 2 and ∠FAB = 120◦.
Since ∠FAB = 120◦, then ∠AFB = ∠ABF = 1

2
(180◦ − 120◦) = 30◦.

Since ∠AFE = 120◦ and ∠AFB = 30◦, then ∠BFE = ∠AFE − ∠AFB = 90◦, which means
that BF is vertical and so B lies on the positive y-axis.
If we draw a perpendicular from A to a point M on BF , then, because 4FAB is isosceles, M
is the midpoint of BF and AM bisects ∠FAB.

DA

B C

EF

P

Q

R

S

T

U
M

y

x

This means that 4BAM is a 30◦-60◦-90◦ triangle.
Thus, BM =

√
3
2
AB =

√
3 and so BF = 2

√
3 which means that the coordinates of B are

(0, 2
√

3).
(We could have determined the length of BF using the cosine law in 4BAF .)
Also, AM = 1

2
AB = 1. This means that the coordinates of A are (−1,

√
3).

Using similar arguments, the coordinates of C are (6, 2
√

3) and the coordinates of D are (7,
√

3).
We can determine the area of hexagon PQRSTU by starting with the area of rectangle BCEF
(which is 6 · 2

√
3 = 12

√
3) and subtracting the areas of 4UFT , 4BPQ, 4CRQ, 4SET ,

4BCQ, and 4FET .
By symmetry, the areas of 4UFT , 4BPQ, 4CRQ, 4SET are all equal.
Also, by symmetry, the areas of 4BCQ and 4FET are equal.
We determine the area of 4UFT and the area of 4FET .
To do this, we determine the coordinates of U and of T .
The line segment FD passes through F (0, 0) and D(7,

√
3).

Thus, it has slope
√
3
7

and equation y =
√
3
7
x.

The line segment AE passes through A(−1,
√

3) and E(6, 0).

Thus, it has slope
√
3
−7 and equation y = −

√
3
7

(x− 6) or y = −
√
3
7
x + 6

√
3

7
.

This means that the coordinates of U (which is the y-intercept of this line) are (0, 6
√
3

7
).

To find the coordinates of T , we find the point of intersection of AE and FD.
Equating expressions for y, we obtain

√
3
7
x = −

√
3
7
x+ 6

√
3

7
which gives 2

√
3

7
x = 6

√
3

7
or x = 3. (It

should not be surprising that the x-coordinate of T is x = 3.)

When x = 3, we obtain y = 3
√
3

7
, and so the coordinates of T are (3, 3

√
3

7
).

So 4FET has base FE = 6 and height equal to the distance from T to FE (which is 3
√
3

7
).

Thus, the area of 4FET is 1
2
· 6 · 3

√
3

7
= 9

√
3

7
.
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Also, 4UFT has vertical base UF (which has length 6
√
3

7
) and horizontal height equal to the

distance from T to UF (which is 3). Thus, the area of 4UFT is 1
2
· 6
√
3

7
· 3 = 9

√
3

7
. (Can you

see a reason why this should be equal to the area of 4FET?)

Finally, this means that the area of PQRSTU is equal to 12
√

3− 6 · 9
√
3

7
or 84

√
3

7
− 54

√
3

7
which

equals 30
√
3

7
=
√
2700
7

.
Therefore, (n, t) = (2700, 7).

Answer: (2700, 7)

6. A list of m distinct positive integers has a sum that is at least 1 + 2 + · · ·+ (m− 1) +m which
is equal to 1

2
m(m + 1).

We note that 1
2
· 63 · 64 = 2016 and 1

2
· 64 · 65 = 2080.

In other words, the sum 1 + 2 + · · · + 63 + 64 is greater than 2024 and any sum of more than
64 distinct positive integers is greater still.
This means that a Gleeson list consists of at most 63 integers.
Note that 1 + 2 + · · · + 62 + 63 = 1

2
· 63 · 64 = 2016 and so 1 + 2 + · · · + 62 + 63 + 8 = 2024

which means that 1 + 2 + · · ·+ 61 + 62 + 71 = 2016.
This means that there is at least one Gleeson list of length 63 and there cannot be a Gleeson
list of length greater than 63, so M , the maximum length of a Gleeson list, is 63.
We need to determine the number of Gleeson lists of length M = 63.
Suppose that a1, a2, a3, . . . , a62, a63 is a Gleeson list.
That is, a1, a2, a3, . . . , a62, a63 are positive integers with a1 < a2 < · · · < a62 < a63 and

a1 + a2 + · · ·+ a62 + a63 = 2024

For each j with 1 ≤ j ≤ 63, let bj = aj − j, which means that aj = j + bj.
That is, we write a generic Gleeson list as

1 + b1, 2 + b2, . . . , 62 + b62, 63 + b63

where the bj’s are the “extra” in each term.
For each j with 1 ≤ j ≤ 62, since aj and aj+1 are integers with aj+1 > aj, then aj+1 ≥ aj + 1.
This means that j + 1 + bj+1 ≥ j + bj + 1 or bj+1 ≥ bj.
This means that b1, b2, . . . , b62, b63 is a list of integers with b1 ≤ b2 ≤ · · · ≤ b62 ≤ b63.
Since a1 = 1 + b1 ≥ 1, then b1 ≥ 0 and so 0 ≤ b1 ≤ b2 ≤ · · · ≤ b62 ≤ b63.
Also, since a1 + a2 + · · ·+ a62 + a63 = 2024 then

(1 + b1) + (2 + b2) + · · ·+ (62 + b62) + (63 + b63) = 2024

Since 1 + 2 + · · ·+ 62 + 63 = 2016, then

b1 + b2 + · · ·+ b62 + b63 = 8

In other words, to count the number of Gleeson lists of length 63, we need to count the number
of non-decreasing lists of non-negative integers b1, b2, . . . , b62, b63 with a sum of 8.
We determine these lists by categorizing them using the number of non-zero terms, in each case
with the understanding that the terms before these are all 0.

• 1 non-zero term: 8

• 2 non-zero terms: 1, 7; 2, 6; 3, 5; 4, 4
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• 3 non-zero terms: 1, 1, 6; 1, 2, 5; 1, 3, 4; 2, 2, 4; 2, 3, 3

• 4 non-zero terms: 1, 1, 1, 5; 1, 1, 2, 4; 1, 1, 3, 3; 1, 2, 2, 3; 2, 2, 2, 2

• 5 non-zero terms: 1, 1, 1, 1, 4; 1, 1, 1, 2, 3; 1, 1, 2, 2, 2

• 6 non-zero terms: 1, 1, 1, 1, 1, 3; 1, 1, 1, 1, 2, 2

• 7 non-zero terms: 1, 1, 1, 1, 1, 1, 2

• 8 non-zero terms: 1, 1, 1, 1, 1, 1, 1, 1

In each case, we determine the lists by starting with the largest possible entries at the right,
and adjusting to the left in a systematic way.
There are 22 such lists, and so 22 Gleeson lists of length 63.

Answer: 22
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Part B

1. (a) Since 64 = 26, then 2x+1 = 26 which gives x + 1 = 6 and so x = 5.

(b) Comparing exponents in the two equations, we obtain t + u = 8 and u− 3 = 2.
From the second equation, u = 5.
Substituting u = 5 into t + u = 8 gives t = 3.
Therefore, t = 3 and u = 5.

(c) Since m and r are integers, we can compare exponents to obtain 2m+r = 7 and 3m−r = 3.
(We can do this because every positive integer greater than 1 can be uniquely factored as
a product of prime numbers.)
Adding these two equations, we obtain (2m + r) + (3m − r) = 7 + 3 or 5m = 10, which
gives m = 2.
Substituting into the first equation gives 2 · 2 + r = 7 and so r = 3.
Therefore, m = 2 and r = 3.

(d) Solution 1
First, we note that 80 = 16 · 5 = 2451.
Since 2p+q5p−q = 2451 and p and q are integers, then comparing exponents, we obtain
p + q = 4 and p− q = 1.
Adding these equations, we obtain 2p = 5 which gives p = 2.5.
This means that there are no integers p and q that satisfy this equation.

Solution 2
First, we note that 80 = 16 · 5 = 2451.
This means that 80 includes exactly one factor of 5.
Since 2p+q5p−q = 80, then the left side also contains only one factor of 5.
This means that p − q = 1, which means that p and q are either odd and even, or even
and odd.
This in turn means that p+ q is the sum of an even integer and an odd integer, so is odd.
But 80 includes an even number of factors of 2 and we know that the left side includes an
odd number of factors of 2.
This is a contradiction, and so there are no integers p and q that satisfy this equation.

2. (a) Solution 1
Using the quadratic formula, the solutions of the quadratic equation x2 − 2x− 1 = 0 are

x =
2±

√
(−2)2 − 4(1)(−1)

2
=

2±
√

8

2
=

2± 2
√

2

2
= 1±

√
2

We set r = 1 +
√

2 and s = 1−
√

2.
Then 2r+s = 2(1+

√
2)+(1−

√
2) = 3+

√
2 and r+2s = (1+

√
2)+2(1−

√
2) = 3−

√
2.

Therefore, a quadratic equation that has x = 3 +
√

2 and x = 3−
√

2 as solutions is

(x− (3 +
√

2))(x− (3−
√

2)) = 0

or
x2 − ((3 +

√
2) + (3−

√
2))x + (3 +

√
2)(3−

√
2) = 0

Since (3 +
√

2)(3−
√

2) = 32 − (
√

2)2 = 9− 2 = 7, this simplifies to x2 − 6x + 7 = 0.
Thus, b = −6 and c = 7.
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Solution 2
If the quadratic equation x2 + Bx + C = 0 has solutions x = r and x = s, then the
quadratic expressions x2 +Bx+C and (x− r)(x−s) must be the same because both have
a leading coefficient of 1, which means that

x2 + Bx + C = x2 − rx− sx + rs = x2 − (r + s)x + rs

and so r + s = −B and rs = C.

Here, the quadratic equation x2 − 2x − 1 = 0 has roots x = r and x = s, which means
that r + s = 2 and rs = −1.
In this case,

(2r + s) + (r + 2s) = 3r + 3s = 3(r + s) = 3 · 2 = 6

(2r + s)(r + 2s) = 2r2 + 5rs + 2s2

= 2r2 + 4rs + 2s2 + rs

= 2(r2 + 2rs + s2) + rs

= 2(r + s)2 + rs

= 2 · 22 + (−1) = 7

Therefore, a quadratic equation with roots x = 2r + s and x = r + 2s is x2 − 6x + 7 = 0.
Thus, b = −6 and c = 7.

(b) Solution 1
Suppose that the polynomial f(x) = x2 +mx+p has two distinct positive real roots x = r
and x = s.
This means that r + s = −m and rs = p, as shown in part (a) Solution 2).
In this case, m2 − 2p = (−m)2 − 2p = (r + s)2 − 2rs = r2 + 2rs + s2 − 2rs = r2 + s2 and
p2 = (rs)2 = r2s2.
This means that we can rewrite g(x) as g(x) = x2 − (r2 + s2)x + r2s2 which factors as
g(x) = (x− r2)(x− s2). (Can you see why this is true by looking at the sum and product
of roots?)
Since g(x) = (x− r2)(x− s2), then g(x) has roots r2 and s2.
We recall that r and s are positive and distinct.
Since neither equals 0, then r2 and s2 are positive.
Since r 6= ±s, then r2 and s2 are distinct.
This means that g(x) has two distinct positive real roots.

Solution 2
We proceed by using the sum and product of roots as shown in part (a) Solution 2.
Suppose that the roots of f(x) = x2 + mx + p are x = r and x = s.
Since r and s are positive, then r + s > 0 and rs > 0.
Since r + s = −m, then m < 0. Since rs = p, then p > 0.
Since f(x) has two distinct real roots, then its discriminant is positive.
In particular, m2 − 4p > 0.



2024 Canadian Senior Mathematics Contest Solutions Page 9

Now, the discriminant of g(x) = x2 − (m2 − 2p)x + p2 is

∆ = (m2 − 2p)2 − 4(1)(p2)

= m4 − 4m2p + 4p2 − 4p2

= m4 − 4m2p

= m2(m2 − 4p)

Since m2 > 0 (because m < 0) and m2 − 4p > 0, then ∆ = m2(m2 − 4p) > 0.
This means that g(x) has two distinct real roots.
Next, the sum of the (real) roots of g(x) is m2 − 2p and their product is p2.
We note that m2− 2p = (m2− 4p) + 2p which is the sum of two positive real numbers and
so is positive.
Also, p2 is positive since p > 0.
Since the product of the roots of g(x) is positive, the roots are either both positive or both
negative.
Since the sum of the roots of g(x) is positive, the roots cannot both be negative, and so
both are positive.
In summary, g(x) has two distinct positive real roots, as required.

(c) Solution 1
Suppose that a cubic equation x3 + Ax2 + Bx + C = 0 has roots x = r, x = s, and x = t.
As we saw in (a), this means that

x3 + Ax2 + Bx + C = (x− r)(x− s)(x− t)

= (x2 − (r + s)x + rs)(x− t)

= x3 − (r + s)x2 + rsx− tx2 + (rt + st)x− rst

= x3 − (r + s + t)x2 + (rs + rt + st)x− rst

and so A = −(r + s + t) and B = rs + rt + st and C = −rst.
Also, if A = −(r + s + t) and B = rs + rt + st and C = −rst, then a cubic equation with
roots r, s and t is x3 + Ax + Bx + C = 0.

Consider the polynomial f1(x) = x3 + A1x
2 + B1x + C1 = x3 − 6x2 + 10x− 5.

Since f(1) = 1− 6 + 10− 5 = 0, then x = 1 is a root.
Factoring, we obtain

f1(x) = (x− 1)(x2 − 5x + 5)

By the quadratic formula, the roots of x2 − 5x + 5 = 0 are

x =
5±

√
(−5)2 − 4(1)(5)

2
=

5±
√

5

2

We note that
5 +
√

5

2
≈ 3.62 and

5−
√

5

2
≈ 1.38.

This means that f1(x) has three distinct positive real roots.

Suppose that, for some positive integer n ≥ 2, we have

An−1 = −(r + s + t)

Bn−1 = rs + rt + st

Cn−1 = −rst
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for some distinct, positive real numbers r, s and t.
Then

An = 2Bn−1 − (An−1)
2

= 2(rs + rt + st)− (−(r + s + t))2

= 2(rs + rt + st)− (r + s + t)2

= 2rs + 2rt + 2st− (r2 + s2 + t2 + 2rs + 2rt + 2st)

= −(r2 + s2 + t2)

Bn = (Bn−1)
2 − 2An−1Cn−1

= (rs + rt + st)2 − 2(−(r + s + t))(−rst)
= r2s2 + r2t2 + s2t2 + 2r2st + 2rs2t + 2rst2 − (2r2st + 2rs2t + 2rst2)

= r2s2 + r2t2 + s2t2

Cn = −(Cn−1)
2

= −(−rst)2

= −r2s2t2

Consider the polynomial

fn(x) = x3 + Anx
2 + Bnx + Cn = x3 − (r2 + s2 + t2)x2 + (r2s2 + r2t2 + s2t2)x− r2s2t2

This polynomial has roots x = r2, x = s2 and x = t2, since the coefficients of the polyno-
mial are the correct combinations of these roots.
This means that the roots of fn(x) are the squares of the roots of fn−1(x).
Here, f1(x) has three distinct positive real roots.
Since the roots of f2(x) are the squares of the roots of f1(x), then they are real, positive
and distinct.
Continuing in this way, the roots of f3(x), f4(x), . . ., f100(x) will each be the squares of
the roots of the previous polynomial in the list, and so will be real, positive and distinct.
Therefore, the polynomial f100(x) has three distinct positive real roots.

Solution 2
From Solution 1, we know that the polynomial f1(x) = x3−6x2+10x−5 has three distinct
positive real roots, one of which is equal to 1.
Suppose that A, B and C are integers and also that the polynomial
f(x) = x3 + Ax2 + Bx + C has three distinct positive real roots, one of which is 1.
Consider the polynomial h(x) = x3 + (2B − A2)x2 + (B2 − 2AC)x− C2.
Note that the coefficients of h(x) are integers because A, B and C are integers.
We show that h(x) has three distinct positive real roots, one of which is equal to 1.

Since f(x) has x = 1 as a root, then f(1) = 1+A+B+C = 0 which gives B = −1−A−C.
Factoring out x− 1 from f(x), we obtain

f(x) = x3 + Ax2 + Bx + C = (x− 1)(x2 + (A + 1)x− C)

To find the quadratic factor here, we write f(x) = (x− 1)(x2 + px + q), expand to obtain
x3 +Ax2 +Bx+C = x3 + (p−1)x2 + (q−p)x− q, and compare coefficients to get C = −q
(giving q = −C) and p− 1 = A (giving p = A + 1).
We note that comparing coefficients of x gives q − p = B or −C − A − 1 = B, which is
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consistent with the relationship above.
Since f(x) has three distinct positive real roots, one of which is equal to 1, then the
quadratic x2 + (A+ 1)x−C has two distinct positive real roots neither of which equals 1.
This means that 1 + (A + 1)− C 6= 0 and so C 6= A + 2, a fact that we will use later.
Also, we can deduce the following:

• The product of its roots is positive; that is, −C > 0 or C < 0.

• The sum of its roots is positive; that is, −A− 1 > 0 or A < −1.

• The discriminant is positive; that is (A + 1)2 + 4C > 0.

To summarize, so far, we know that B = −1 − A − C and C < 0 and A < −1 and
(A + 1)2 + 4C > 0.

We now examine h(x) = x3 + (2B − A2)x2 + (B2 − 2AC)x− C2.
We start by showing that x = 1 is a root of h(x) by showing that h(1) = 0.
Now

h(1) = 1 + (2B − A2) + (B2 − 2AC)− C2

= B2 + 2B + 1− (A2 + 2AC + C2)

= (B + 1)2 − (A + C)2

= (B + 1 + A + C)(B + 1− A− C)

Recall that B = −1−A−C or 1 +A+B +C = 0 and so h(1) = 0 and so x = 1 is a root
of h(x).
Factoring h(x) in a similar manner to how we factored f(x), we obtain

h(x) = x3 + (2B − A2)x2 + (B2 − 2AC)x− C2

= (x− 1)(x2 + (2B − A2 + 1)x + C2)

= (x− 1)(x2 + (−2− 2A− 2C − A2 + 1)x + C2)

= (x− 1)(x2 − (A2 + 2A + 2C + 1)x + C2)

We now need to show that the quadratic polynomial q(x) = x2− (A2 +2A+2C +1)x+C2

has two distinct real positive roots neither of which equals 1.
First, we show that the roots of q(x) are real and distinct by examining the discriminant:

∆ = (A2 + 2A + 2C + 1)2 − 4C2

= (A2 + 2A + 2C + 1 + 2C)(A2 + 2A + 2C + 1− 2C)

= ((A + 1)2 + 4C)(A + 1)2

The first factor is positive since (A + 1)2 + 4C is positive; the second factor is positive
since (A + 1)2 is positive because A 6= −1.
Therefore, ∆ > 0 which means that q(x) has two distinct real roots.
To show that q(x) does not have 1 as a root, we suppose that q(1) = 0 and obtain a
contradiction:

q(1) = 0

1− A2 − 2A− 2C − 1 + C2 = 0

C2 − 2C + 1− A2 − 2A− 1+ = 0

(C − 1)2 − (A + 1)2 = 0

(C − 1 + A + 1)(C − 1− A− 1) = 0

(C + A)(C − A− 2) = 0
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Since C < 0 and A < 0, then C+A 6= 0. Further, we saw above that C 6= A+2. Together,
this means that q(1) 6= 0.
This in turn means that h(x) has three distinct real roots.
Finally, we need to show that the roots of q(x) are positive.
Since q(x) = x2− (A2 + 2A+ 2C + 1)x+C2 then the product of the two real roots of q(x)
is C2 and the sum of the roots is A2 + 2A + 2C + 1.
Since the product is C2 and C < 0, then the product is positive, which means that both
roots are positive or both are negative.
Since the sum of the roots is

A2 + 2A + 2C + 1 = ((A + 1)2 + 4C) + (−2C)

and each of these terms is positive, then the sum of the roots is positive, which means
that they cannot both be negative, thus must both be positive.
Therefore, h(x) has three distinct positive real roots, one of which is 1.

We have shown that if f(x) = x3 + Ax2 + Bx + C has three distinct positive real roots,
one of which is 1, then h(x) = x3 + (2B − A2)x2 + (B2 − 2AC)x − C2 has three distinct
positive real roots, one of which is 1.
The process of moving from f(x) to h(x) is exactly the process of moving from fn−1(x) to
fn(x) for any positive integer n ≥ 2.
Therefore, since f1(x) has three distinct positive real roots, one of which is 1, then f2(x)
has this property, which in turn means that f3(x) has this property, and so on.
Continuing, this shows us that f100(x) has three distinct positive real roots.

3. (a) We note that PB = PD = 53 and BC = 28.
By the Pythagorean Theorem in 4BCP , we have

PC2 = PB2 −BC2 = 532 − 282 = (53 + 28)(53− 28) = 81 · 25 = 92 · 52

Since PC > 0, then PC = 9 · 5 = 45.
Since ABCD is a rectangle, then AB = DC = PD + PC = 53 + 45 = 98.

(b) Suppose that BC = m, an integer, and that PD = x.
Note that PB = PD = x.
Also, since DC = AB = 101, then PC = DC − PD = 101− x.
Using the Pythagorean Theorem in 4PBC gives the following equivalent equations:

PB2 = PC2 + BC2

x2 = (101− x)2 + m2

x2 = x2 − 202x + 1012 + m2

202x = 1012 + m2

x =
1012 + m2

2 · 101

For x to be an integer, we need the numerator to be divisible by 101.
Since 1012 is divisible by 101, we need m2 to be divisible by 101.
Since 101 is prime, we need m to be divisible by 101.
However, m = BC < AB = 101 and there are no positive multiples of 101 less than 101.
This means that m cannot be divisible by 101, which means that x, the length of PD,
cannot be an integer.
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(c) Suppose that AB = n, BC = m, and PD = x for integers m, n and x with m < n and
x < n.
Here, we have PB = x, PC = n− x, and BC = m.
Using the Pythagorean Theorem in 4PBC gives the following equivalent equations:

PB2 = PC2 + BC2

x2 = (n− x)2 + m2

x2 = x2 − 2nx + n2 + m2

2nx = n2 + m2

x =
n2 + m2

2n

We need to determine all positive integers m with 1 ≤ m ≤ 100 for which there are 7

positive integers n for which x =
n2 + m2

2n
is an integer.

We note that, since the demoninator of this fraction (2n) is even, then for x to be an
integer, the numerator of this fraction (n2 + m2) is also even.
Since n2 + m2 must be even, then n and m are both even or both odd.
We look at two cases: m odd and m even.

Case 1: m is odd
Since m is odd, then n is odd.

Here, x =
n2 + m2

2n
=

n

2
+

1

2
· m

2

n
.

Since
n

2
is an odd integer divided by 2, then for x to be an integer,

1

2
·m

2

n
must also equal

an odd integer divided by 2, which means that
m2

n
must equal an odd integer.

Recalling that n > m, this means that we want to determine all odd integers m with
1 ≤ m ≤ 100 for which exactly 7 integers n with m < n ≤ m2 are divisors of m2.
Note that every divisor n of m2 with m < n ≤ m2 will correspond to a divisor q of m2

with 1 ≤ q < m. This correspondence comes from the factor pair qn = m2 and noting

that q =
m2

n
from which m < n ≤ m2 gives

m2

m2
≤ q <

m2

m
.

Additionally, m2 has the divisor m for which we have not yet accounted.
This means that we want to determine all odd integers m with 1 ≤ m ≤ 100 for which m2

has exactly 2 · 7 + 1 = 15 positive divisors.
If m has three distinct prime divisors p1, p2, p3, then m2 is divisible by the product p21p

2
2p

2
3.

This means that m2 has at least (2 + 1)(2 + 1)(2 + 1) = 27 positive divisors, which is
impossible.
Therefore, m can have at most two distinct prime divisors.
Suppose that m = pa1 for some prime p1 and positive integer a.
Then m2 = p2a1 and m2 has 2a + 1 positive divisors.
Since m2 has 15 positive divisors, then 2a + 1 = 15 which gives a = 7 and so m = p71.
However, the smallest odd perfect seventh power is 37 > 100, and so there are no m in
this sub-case.
Suppose that m = pa1p

b
2 for some odd primes p1 6= p2 and positive integers a and b.

Thus, m2 = p2a1 p2b2 and m2 has (2a + 1)(2b + 1) divisors.
Since 2a + 1 ≥ 3 and 2b + 1 ≥ 3 and (2a + 1)(2b + 1) = 15, then 2a + 1 and 2b + 1 must
be 5 and 3 in some order, which means that a and b must be 2 and 1 in some order.
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Thus, m = p21p2 for some odd primes p1 and p2.
If p1 = 3, then since m = 9p2 and 1 ≤ m ≤ 100, we can have m = 45 (from p2 = 5) or
m = 63 (from p2 = 7) or m = 99 (from p2 = 11).
If p1 = 5, then since m = 25p2 and 1 ≤ m ≤ 100, we can have m = 75 (from p2 = 3).
If p1 ≥ 7, there are no odd primes p2 for which m ≤ 100.
Therefore, in the case that m is odd, the possible values for m are m = 45, 63, 75, 99.

Case 2: m is even
Since m is even, then n is even.
Let m = 2M and n = 2N for some positive integers M and N .
Since 1 ≤ 2M ≤ 100, then 0.5 ≤M ≤ 50 and so 1 ≤M ≤ 50.

Here, x =
4N2 + 4M2

4N
= N +

M2

N
.

Since N is an integer, then for x to be an integer,
M2

N
must also equal an integer.

Since n > m, then N > M . This means that we want to determine all integers M with
1 ≤M ≤ 50 for which exactly 7 integers N with M < N ≤M2 are divisors of M2.
As above, this means that we want to determine all integers M with 1 ≤ M ≤ 50 for
which M2 has exactly 15 positive divisors.
Again, as above, M must be of the form p21p2 for some primes p1 and p2. This time, we
do not have the restriction that M must be odd.
If p1 = 2, then since M = 4p2 and 1 ≤ M ≤ 50, we can have M = 12 (from p2 = 3) or
M = 20 (from p2 = 5) or M = 28 (from p2 = 7) or M = 44 (from p2 = 11).
If p1 = 3, then since M = 9p2 and 1 ≤ M ≤ 50, we can have M = 18 (from p2 = 2) or
M = 45 (from p2 = 5).
If p1 = 5, then since M = 25p2 and 1 ≤M ≤ 50, we can have M = 50 (from p2 = 2).
Since m = 2M , the possible values of m in this case are m = 24, 40, 56, 88, 36, 90, 100.

Combining the two cases, the values of m are m = 24, 36, 40, 45, 56, 63, 75, 88, 90, 99, 100.


