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Part A

1. Between them, Markus and Katharina have 9 + 5 = 14 candies.
When Sanjiv gives 10 candies in total to Markus and Katharina, they now have 14 + 10 = 24
candies in total.
Since Markus and Katharina have the same number of candies, they each have 1

2
· 24 = 12

candies.

Answer: 12

2. Suppose that the square has side length 2x cm.
Each of the two rectangles thus has width 2x cm and height x cm.
In terms of x, the perimeter of one of these rectangles is 2(2x cm) + 2(x cm) which equals
6x cm.
Since the perimeter of each rectangle is 24 cm, then 6x = 24 which means that x = 4.
Since the square has side length 2x cm, then the square is 8 cm by 8 cm and so its area is
64 cm2.

Answer: 64 cm2

3. Solution 1
Since a, b, c, d, and e are consecutive with a < b < c < d < e, we can write b = a + 1 and
c = a+ 2 and d = a+ 3 and e = a+ 4.
From a2 + b2 + c2 = d2 + e2, we obtain the equivalent equations:

a2 + (a+ 1)2 + (a+ 2)2 = (a+ 3)2 + (a+ 4)2

a2 + a2 + 2a+ 1 + a2 + 4a+ 4 = a2 + 6a+ 9 + a2 + 8a+ 16

a2 − 8a− 20 = 0

(a− 10)(a+ 2) = 0

Since a is positive, then a = 10.
(Checking, we see that 102+112+122 = 100+121+144 = 365 and 132+142 = 169+196 = 365.)

Solution 2
Since a, b, c, d, and e are consecutive with a < b < c < d < e, we can write b = c − 1 and
a = c− 2 and d = c+ 1 and e = c+ 2.
From a2 + b2 + c2 = d2 + e2, we obtain the equivalent equations:

(c− 2)2 + (c− 1)2 + c2 = (c+ 1)2 + (c+ 2)2

c2 − 4c+ 4 + c2 − 2c+ 1 + c2 = c2 + 2c+ 1 + c2 + 4c+ 4

c2 − 12c = 0

c(c− 12) = 0

Since c is a positive integer, then c = 12, which means that a = c− 2 = 10.
(Checking, we see that 102+112+122 = 100+121+144 = 365 and 132+142 = 169+196 = 365.)

Answer: a = 10
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4. We note that π ≈ 3.14159 which means that 3.14 < π < 3.15.
Therefore, π+0.85 satisfies 3.99 < π+0.85 < 4.00 and π+0.86 satisfies 4.00 < π+0.86 < 4.01.
This means that

3 < π < π + 0.01 < π + 0.02 < · · · < π + 0.85 < 4 < π + 0.86 < π + 0.87 < · · · < π + 0.99 < 5

Also, ⌊π+ 0.85⌋ = 3 because π+ 0.85 is between 3 and 4, and ⌊π+ 0.86⌋ = 4 because π+ 0.86
is between 4 and 5.
Next, we re-write

S =
⌊
π
⌋
+
⌊
π + 1

100

⌋
+
⌊
π + 2

100

⌋
+
⌊
π + 3

100

⌋
+ · · ·+

⌊
π + 99

100

⌋
as

S = ⌊π + 0.00⌋+ ⌊π + 0.01⌋+ ⌊π + 0.02⌋+ ⌊π + 0.03⌋+ · · ·+ ⌊π + 0.84⌋+ ⌊π + 0.85⌋
+ ⌊π + 0.86⌋+ ⌊π + 0.87⌋+ · · ·+ ⌊π + 0.99⌋

Each of the terms ⌊π + 0.00⌋, ⌊π + 0.01⌋, ⌊π + 0.02⌋, ⌊π + 0.03⌋, · · · , ⌊π + 0.84⌋, ⌊π + 0.85⌋ is
equal to 3, since each of π + 0.00, π + 0.01, . . ., π + 0.85 is greater than 3 and less than 4.
Each of the terms ⌊π + 0.86⌋, ⌊π + 0.87⌋, · · · , ⌊π + 0.99⌋ is equal to 4, since each of π + 0.86,
π + 0.87, . . ., π + 0.99 is greater than 4 and less than 5.
There are 86 terms in the first list and 14 terms in the second list.
Thus, S = 86 · 3 + 14 · 4 = 86 · 3 + 14 · 3 + 14 = 100 · 3 + 14 = 314.

Answer: S = 314

5. We square the two given equations to obtain

(3 sinx+ 4 cos y)2 = 52

(4 sin y + 3 cosx)2 = 22

or

9 sin2 x+ 24 sinx cos y + 16 cos2 y = 25

16 sin2 y + 24 sin y cosx+ 9 cos2 x = 4

Adding these equations and re-arranging, we obtain

9 sin2 x+ 9 cos2 x+ 16 sin2 y + 16 cos2 y + 24 sinx cos y + 24 cosx sin y = 29

Since sin2 θ + cos2 θ = 1 for every angle θ, then

9 + 16 + 24(sinx cos y + cosx sin y) = 29

from which we obtain
sinx cos y + cosx sin y = 4

24

and so sin(x+ y) = 1
6
. (This uses the Useful Fact for Part A.)

(It is possible to solve for sin x, cosx, sin y, and cos y. Can you see an approach that would
allow you to do this?)

Answer: 1
6
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6. Using the second property with x = 0, we obtain f(0) = 1
2
f(0) from which we get 2f(0) = f(0)

and so f(0) = 0.
Using the first property with x = 0, we obtain f(1) = 1− f(0) = 1− 0 = 1.

Using the first property with x = 1
2
, we obtain f(1

2
) = 1 − f(1

2
) and so 2f(1

2
) = 1 which gives

f(1
2
) = 1

2
.

Using the second property with x = 1, we obtain f(1
3
) = 1

2
f(1) = 1

2
.

Next, we note that 3
7
≈ 0.43.

Since 3
7
≤ 1

2
, then, using the third property, f(3

7
) ≤ f(1

2
) = 1

2
.

Since 3
7
≥ 1

3
, then, using the third property, f(3

7
) ≥ f(1

3
) = 1

2
.

Since 1
2
≤ f(3

7
) ≤ 1

2
, then f(3

7
) = 1

2
.

Using the second property with x = 3
7
, we obtain f(1

7
) = 1

2
f(3

7
) = 1

2
· 1
2
= 1

4
.

Using the first property with x = 1
7
, we obtain f(6

7
) = 1− f(1

7
) = 1− 1

4
= 3

4
.

Here are two additional comments about this problem and its solution:

(i) While the solution does not contain many steps, it is not easy to come up with the best
steps in the best order to actually solve this problem.

(ii) There is indeed at least one function, called the Cantor function, that satisfies these
properties. This function is not easy to write down, and finding the function is not
necessary to answer the given question. For those interested in learning more, consider
investigating ternary expansions and binary expansions of real numbers between 0 and 1,
as well as something called the Cantor set.

Answer: f(6
7
) = 3

4
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Part B

1. (a) To determine the point of intersection, we equate the two expressions for y to successively
obtain:

4x− 32 = −6x+ 8

10x = 40

x = 4

When x = 4, using the equation y = 4x− 32, we obtain y = 4 · 4− 32 = −16.
Therefore, the lines intersect at (4,−16).

(b) To determine the point of intersection, we equate the two expressions for y to successively
obtain:

−x+ 3 = 2x− 3a2

3 + 3a2 = 3x

x = 1 + a2

When x = 1 + a2, using the equation y = −x+ 3, we obtain y = −(1 + a2) + 3 = 2− a2.
Therefore, the lines intersect at (1 + a2, 2− a2).

(c) Since c is an integer, then −c2 is a integer that is less than or equal to 0.
The two lines have slopes −c2 and 1. Since −c2 ≤ 0, these slopes are different, which
means that the lines are not parallel, which means that they intersect.
To determine the point of intersection, we equate the two expressions for y to successively
obtain:

−c2x+ 3 = x− 3c2

3 + 3c2 = x+ c2x

3 + 3c2 = x(1 + c2)

Since c2 ≥ 0, then 1 + c2 ≥ 1, which means that we can divide both sides by 1 + c2 to

obtain x =
3 + 3c2

1 + c2
= 3.

In particular, this means that the x-coordinate of the point of intersection is an integer.
When x = 3, using the equation y = −c2x+ 3, we obtain y = −c2 · 3 + 3 = 3− 3c2.
Since c is an integer, then y = 3− 3c2 is an integer.
Therefore, the lines intersect at a point whose coordinates are integers.

(d) To determine the point of intersection in terms of d, we equate the two expressions for y
to successively obtain:

dx+ 4 = 2dx+ 2

2 = dx

For the value of x to be an integer, we need d ̸= 0 and
2

d
to be an integer.

Since d is itself an integer, then d is a divisor of 2, which means that d equals one of 1,
−1, 2, −2.
We still need to confirm that, for each of these values of d, the coordinate y is also an
integer.
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When x =
2

d
, using the equation y = dx+ 4, we obtain y = d ·

(
2

d

)
+ 4 = 2 + 4 = 6.

Therefore, when d = 1,−1, 2,−2, the lines intersect at a point with integer coordinates.

We can verify this in each case:

• d = 1: The lines with equations y = x+ 4 and y = 2x+ 2 intersect at (2, 6).

• d = −1: The lines with equations y = −x+ 4 and y = −2x+ 2 intersect at (−2, 6).

• d = 2: The lines with equations y = 2x+ 4 and y = 4x+ 2 intersect at (1, 6).

• d = −2: The lines with equations y = −2x+ 4 and y = −4x+ 2 intersect at (−1, 6).

2. (a) Each interior angle in a regular hexagon measures 120◦. (One way to verify this is to use
the fact that the sum of the interior angles in a regular polygon with n sides is (n−2)·180◦.
When n = 6, this sum is 4 · 180◦ = 720◦. In a regular hexagon, each of these angles has
measure 1

6
· 720◦ = 120◦.)

Since 120◦ is equal to 1
3
of 360◦, then the area of the shaded sector is 1

3
of the area of a

complete circle of radius 6.
Therefore, the shaded area is 1

3
· π(62) = 12π.

(b) To determine the area of region between the arc through C and E and the line segment
CE, we take the area of the sector obtained in (a) and subtract the area of △CDE.
△CDE has DE = DC = 6 and ∠CDE = 120◦.
There are many ways to find the area of this triangle.
One way is to consider ED as the base of this triangle and to draw an altitude from C to
ED extended, meeting ED extended at T .

A B

C

DE

F C

DE T

Since ∠CDE = 120◦, then ∠CDT = 180◦ − ∠CDE = 60◦.
This means that △CDT is a 30◦-60◦-90◦ triangle, and so CT =

√
3
2
CD =

√
3
2
· 6 = 3

√
3.

This means that the area of △CDE is 1
2
· ED · CT = 1

2
· 6 · 3

√
3 = 9

√
3.

Therefore, the area of the shaded region between the arc through C and E and the line
segment CE is 12π − 9

√
3.

Since the region between line segment BF and the arc through B and F is constructed in
exactly the same way, its area is the same.
Therefore, the total area of the shaded regions is 2(12π − 9

√
3) = 24π − 18

√
3.
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(c) Let M be the midpoint of DE and N be the midpoint of EF .
This means that M and N are the centres of two of the semi-circles.
Let P be the point other than E where the semi-circles with centres M and N intersect.
Join E to P .

A B

C

DE

F
P

M

N

By symmetry, EP divides the shaded region between these two semi-circles into two pieces
of equal area.
Let the area of one of these pieces be a.
Furthermore, by symmetry in the whole hexagon, each of the six shaded regions between
two semi-circles is equal in area.
This means that the entire shaded region is equal to 12a.
Therefore, we need to determine the value of a.
Consider the region between EP and the arc with centre M through E and P .

DE

F

P

M

N

Since DE = EF = 6, then DM = ME = EN = NF = 3. Each of the two semi-circles
has radius 3.
Since P is on both semi-circles, then NP = MP = 3.
Consider △EMP . Here, we have ME = MP = 3.
Also, ∠MEP = 60◦ since ∠DEF = 120◦ and ∠MEP = ∠NEP by symmetry.
Since ME = MP , then ∠MPE = ∠MEP = 60◦.
Since △EMP has two 60◦ angles, then its third angle also has measure 60◦, which means
that △EMP is equilateral.
Therefore, PE = 3 and ∠EMP = 60◦.
Now, we can calculate the area a.
The area a is equal to the area of the sector of the circle with centre M defined by E and
P minus the area of △EMP .
Since ∠EMP = 60◦, which is 1

6
of a complete circle, and the radius of the circle from

which the sector comes is 3, then the area of the sector is 1
6
· π(32) = 3

2
π.

The area of△EMP , which is equilateral with side length 3, can be found in many different
ways.
One way to do this is to use the formula that the area of a triangle with two side lengths
x and y and an angle of θ between these two sides is equal to 1

2
xy sin θ.

Thus, the area of △EMP is 1
2
· 3 · 3 sin 60◦ = 9

√
3

4
.

This means that a = 3
2
π − 9

√
3

4
.

Finally, the total area of the shaded regions equals 12a which equals 12
(

3
2
π − 9

√
3

4

)
, or

18π − 27
√
3.
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3. (a) When p = 33 and q = 216,

f(x) = x3 − 33x2 + 216x = x(x2 − 33x+ 216) = x(x− 9)(x− 24)

since 9 + 24 = 33 and 9 · 24 = 216, and

g(x) = 3x2 − 66x+ 216 = 3(x2 − 22x+ 72) = 3(x− 4)(x− 18)

since 4 + 18 = 22 and 4 · 18 = 72.
Therefore, the equation f(x) = 0 has three distinct integer roots (namely x = 0, x = 9
and x = 24) and the equation g(x) = 0 has two distinct integer roots (namely x = 4 and
x = 18).

(b) Suppose first that the equation f(x) = 0 has three distinct integer roots.
Since f(x) = x3 − px2 + qx = x(x2 − px+ q), then these roots are x = 0 and the roots of
the quadratic equation x2 − px+ q = 0 which are

x =
p±

√
p2 − 4(1)q

2(1)
=

p±
√
p2 − 4q

2

For the roots of x2 − px+ q = 0 to be distinct, we need p2 − 4q to be positive.
For the roots of x2 − px + q = 0 to be integers, we need each of p ±

√
p2 − 4q to be an

integer, which means that
√

p2 − 4q is an integer, which means that p2 − 4q must be a
perfect square.
Therefore, p2 − 4q is a positive perfect square.

Suppose also that the equation g(x) = 0 has two distinct integer roots.
The roots of the equation 3x2 − 2px+ q = 0 are

x =
2p±

√
(2p)2 − 4(3)(q)

2(3)
=

2p±
√

4p2 − 12q

6
=

p±
√
p2 − 3q

3

As above, for these roots to be distinct, we need p2−3q to be positive and a perfect square.

Furthermore, since the roots of the equation 3x2 − 2px+ q = 0 are distinct integers, then

the roots of the equation x2 − 2p

3
x+

q

3
= 0 are also distinct integers.

This means that
2p

3
and

q

3
, which are the sum and product of the roots, respectively, are

themselves integers.
This means that p must be a multiple of 3 and q must be a multiple of 3.

To complete this part, we need to prove that q (which we know is a multiple of 3) is in
fact a multiple of 9.
To do this, we use the fact that p and q are multiples of 3 and that p2 − 4q is a perfect
square.
Since p and q are multiples of 3, we can set p = 3P and q = 3Q for some integers P and
Q.
In this case,

p2 − 4q = (3P )2 − 4(3Q) = 9P 2 − 12Q = 3(3P 2 − 4Q)

This means that p2 − 4q is a perfect square that is a multiple of 3.
Since any perfect square that is a multiple of 3 must be a multiple of 9 (prime factors of
perfect squares occur in pairs), then 3P 2 − 4Q is itself a multiple of 3.
Since 3P 2 − 4Q is a multiple of 3 and 3P 2 is a multiple of 3, then 4Q must be a multiple
of 3, which means that Q is a multiple of 3.
Since q = 3Q and Q is a multiple of 3, then q is a multiple of 9, which completes this part.
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(c) The goal of this solution is to show that there are infinitely many pairs of positive integers
(p, q) with certain properties. To do this, we do not have to find all pairs (p, q) with these
properties, as long as we still find infinitely many such pairs. This means that we can
make some assumptions as we go. Rather than making all of these assumptions at the
very beginning, we will add these as we go.

To begin, we assume that p and q are positive integers with p a multiple of 3 and q a
multiple of 9. (Assumption #1)
Thus, we write p = 3a and q = 9b for some positive integers a and b.
Suppose that a and b have the additional property that a2 − 3b = m2 and a2 − 4b = n2

for some positive integers m and n. (Assumption #2)
These first two Assumptions are not surprising given the results of (b).
In this case, the non-zero solutions of f(x) = 0 are

x =
p±

√
p2 − 4q

2
=

3a±
√

(3a)2 − 4(9b)

2
=

3a± 3
√
a2 − 4b

2
=

3a± 3n

2

and the solutions of g(x) = 0 are

x =
2p±

√
4p2 − 12q

6
=

p±
√
p2 − 3q

3
=

3a± 3
√
a2 − 3b

3
= a±m

These solutions are all integers as long as the integers 3a ± 3n are both even, which is
equivalent to saying that a and n are both even or both odd (that is, have the same parity).
Since a2 − 4b = n2, this means that a2 − n2 = 4b, which is even, which means that a2 and
n2 have the same parity, which means that a and n have the same parity.
Further, we note that since p = 3a and q = 9b then both p and q are divisible by 3 and so
gcd(p, q) = 3 exactly when a and 3b have no further common divisors larger than 1.

Therefore, to find an infinite number of pairs of positive integers (p, q) which satisfy the
given conditions, we can find an infinite number of pairs of positive integers (a, b) for which
a2 − 3b and a2 − 4b are both positive perfect squares, and where gcd(a, 3b) = 1.

Recall that a2 − 3b = m2 and a2 − 4b = n2 for some positive integers m and n.
This gives 4a2 − 12b = 4m2 and 3a2 − 12b = 3n2.
Subtracting, we obtain a2 = 4m2 − 3n2, which gives 3n2 = 4m2 − a2.
We re-write this equation as n2 · 3 = (2m+ a)(2m− a).
Now we suppose that

2m+ a = n2

2m− a = 3

(Assumption #3)
This adds a further assumption that connects the integers a, b, m, and n, and allows us
to start representing these variables in terms of just n.

Then 4m = n2 + 3 which gives m =
n2 + 3

4
and 2a = n2 − 3 which gives a =

n2 − 3

2
.

Under these assumptions, for m and a to be integers, we need n to be odd.
Recall that, to find an infinite number of pairs of positive integers (p, q) which satisfy
the given conditions, we can find an infinite number of pairs of positive integers (a, b) for
which a2 − 3b and a2 − 4b are both positive perfect squares, and where gcd(a, 3b) = 1.
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Setting n = 2N + 1 for some positive integer N , we obtain

m =
(2N + 1)2 + 3

4
=

4N2 + 4N + 1 + 3

4
= N2 +N + 1

a =
n2 − 3

2
=

4N2 + 4N + 1− 3

2
= 2N2 + 2N − 1

We can use these now to write

b =
a2 − n2

4

=
(2N2 + 2N − 1)2 − (2N + 1)2

4

=
(2N2 + 2N − 1 + 2N + 1)(2N2 + 2N − 1− 2N − 1)

4
= (N2 + 2N)(N2 − 1)

We note that the desired relationships between a, b, m, and n still hold:

• Because b =
a2 − n2

4
, we have a2 − 4b = n2.

• Because 2m+ a = n2 and 2m− a = 3, then 4m2 − a2 = 3n2.

• This gives 4m2 − a2 = 3(a2 − 4b) and so 4m2 = 4a2 − 12b and so a2 − 3b = m2.

Therefore, each positive integer N defines integers a and b with the property that a2 − 3b
and a2 − 4b are both perfect squares.
Therefore, in order to complete our proof, we need to show that there are infinitely many
integers N for which gcd(a, 3b) = 1.

Since a = 2N2+2N − 1 and b = (N2+2N)(N2− 1) = N(N +2)(N +1)(N − 1), we want
to show that there are infinitely many integers N for which

gcd(2N2 + 2N − 1, 3N(N + 2)(N + 1)(N − 1)) = 1

We consider 2N2 + 2N − 1 and N(N + 1) = N2 +N .
Since gcd(A,B) = gcd(A,B −QA) for all integers A,B,Q, then

gcd(N2 +N, 2N2 + 2N − 1)

= gcd(N2 +N, 2N2 + 2N − 1− 2(N2 +N))

= gcd(N2 +N,−1)

The only positive divisor of −1 is 1, so

gcd(N2 +N, 2N2 + 2N − 1) = gcd(N2 +N,−1) = 1

Since gcd(2N2 + 2N − 1, N2 +N) = 1 and gcd(A,BC) = gcd(A,B) when gcd(A,C) = 1,
then

gcd(2N2 + 2N − 1, 3N(N + 2)(N + 1)(N − 1))

= gcd(2N2 + 2N − 1, 3(N + 2)(N − 1)(N2 +N))

= gcd(2N2 + 2N − 1, 3(N + 2)(N − 1))

= gcd(2N2 + 2N − 1, 3N2 + 3N − 6)
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Since 2N2 + 2N − 1 is odd, then gcd(2N2 + 2N − 1, 2) = 1.
Thus,

gcd(2N2 + 2N − 1, 3N2 + 3N − 6) = gcd(2N2 + 2N − 1, 2(3N2 + 3N − 6))

Again using the fact that gcd(A,B) = gcd(A,B −QA), we obtain

gcd(2N2 + 2N − 1, 6N2 + 6N − 12)

= gcd(2N2 + 2N − 1, 6N2 + 6N − 12− 3(2N2 + 2N − 1))

= gcd(2N2 + 2N − 1,−9)

Therefore,

gcd(2N2 + 2N − 1, 3N(N + 2)(N + 1)(N − 1)) = gcd(2N2 + 2N − 1,−9)

This means that, to complete our proof, we need to show that there are infinitely many
positive integers N for which gcd(2N2 + 2N − 1,−9) = 1.
Note that the positive divisors of −9 are 1, 3 and 9.
Suppose that N is a multiple of 3. In this case 2N2 + 2N is a multiple of 3 (because it
is a multiple of N), which means that 2N2 + 2N − 1 is not a multiple of 3, which means
that gcd(2N2 + 2N − 1,−9) = 1.

Therefore, there are infinitely many positive integers N for which

gcd(2N2 + 2N − 1, 6N(N + 2)(N + 1)(N − 1)) = gcd(2N2 + 2N − 1,−9) = 1

This means that there are infinitely many positive integers N for which gcd(a, 3b) = 1.
This means that there are infinitely many pairs of positive integers (a, b) for which a2− 3b
and a2 − 4b are both positive perfect squares and where gcd(a, 3b) = 1.
This means that there are infinitely many pairs of positive integers (p, q) with the required
properties.


