
Problem of the Month
Solution to Problem 7: April 2023

(a) Suppose a and b are elements in An and that d(a, b) = k for some k. If k = 0, then a = b,
so their distance in the graph is also 0.

Otherwise, a and b differ at exactly k coordinates i1, i2, . . . , ik where i1 < i2 < · · · < ik.
Using the notation introduced in the problem statement, we mean that a[i] 6= b[i] if i is
in the list i1, i2, . . . , ik and a[i] = b[i] otherwise. Notice that the function g(x) = 1 − x
has the property that g(0) = 1 and g(1) = 0, so g switches 1 and 0. We will now define a
sequence a1,a2, . . . ,ak of elements in An. Informally, a1 is obtained from a by leaving all
coordinates alone except a[i1], which gets changed from 0 to 1 or 1 to 0 as appropriate.
Continuing, a2 is obtained from a1 by leaving all coordinates alone except a1[i2], which
gets switched, and this continues for a3, a4, and so on. More formally, for each m ≥ 1
with 1 ≤ m ≤ k we define am as follows.

• am[i] = a[i] if i is not in the list i1, i2, . . . , ik.

• am[i] = g(a[i]) for each i in the list i1, i2, . . . , im.

• am[i] = a[i] for each i in the list im+1, im+2, . . . , ik.

By construction, the list a,a1,a2, . . . ,ak−1,ak is a list in which every pair of elements
differ at exactly one coordinate. Moreover, the list is that which is generated by changing
the coordinates of a that differ from those of b one at a time, from leftmost to rightmost.
This means b = ak, and the above is a walk from a to b. There are k + 1 vertices in this
walk, so there are k edges.

We have constructed a walk from a to b in the natural graph of An that has length k,
which means the distance from a to b in the natural graph is at most k. To see that it is
at least k, we suppose a, c1, c2, . . . , cm−1, b is a walk in the natural graph of An of length
m for some m. Since there are m vertices in this walk in addition to a and two vertices
have an edge between them exactly when they differ at exactly one coordinate, the total
number of coordinates at which a and b (the ends of the walk) can differ is at most m.
Since we know that they differ at exactly k coordinates, we must have that m ≥ k. This
means that any walk from a to b in the natural graph of An has at least k edges.

We have shown that the distance in the natural graph between a and b is at least k and
at most k, which means it is exactly k.

(b) For convenience, in the solution to this part and the solution to part (c), we will refer
to a two element subset as a pair. Since d(a, b) = d(b,a) for any elements a, b ∈ An,
we will say that d(a, b) is the Hamming distance of the pair {a, b} or the pair {a, b} has
Hamming distance d(a, b), and possibly other similar things depending on the grammar
in that particular sentence. Similarly, we might say that {a, b} has distance k in a graph
to mean that the distance between the vertices labelled by a and b is k in that graph.

For a fixed element a ∈ An, an element b ∈ An satisfies d(a, b) = k exactly when it
differs from a at exactly k coordinates. There are n coordinates in total, so there are
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(
n

k

)
possible choices of k coordinates that could be different from a. Therefore, for a

fixed element a ∈ An, there are exactly

(
n

k

)
elements b ∈ An with the property that

d(a, b) = k. There are 2n elements in An and each a ∈ A belongs to exactly

(
n

k

)
pairs

with a Hamming distance of k. This gives a total of 2n ×
(
n

k

)
pairs. However, this total

counts every pair twice, once for each of its two elements. Thus, the number of pairs in

An with a Hamming distance of k is
1

2
2n

(
n

k

)
= 2n−1

(
n

k

)
.

(c) Denote by En the set of pairs {a, b} from An satisfying d(a, b) = 1. From part (b), there

are 2n−1

(
n

1

)
= n2n−1 pairs in En. In the relabelled natural graph of An, we want the

distances of the pairs in En to be equally distributed among all possible distances in the
graph. There are n possible distances between distinct vertices in the graph, so the fact
that n2n−1 is a multiple of n is a good sign.

We want to permute the elements of An in such a way that for each k from 1 through n,

exactly
n2n−1

n
= 2n−1 pairs in En have a distance of k in the relabelled graph.

There are many ways to do this. The approach given here is inductive, starting by exam-
ining A2. Consider the example from the problem statement. In that example, 01 and 11
were switched and 00 and 10 stayed the same

00 10

01 11

00 10

11 01

Although it is not very interesting in A2, there is an observation we can make that will
generalize. The vertices that are connected by horizontal edges in the diagram of the
natural graph of A2 remain connected by an edge after permuting. The vertices in the
top change order but their distance apart does not change. Meanwhile, the vertices that
are connected by a vertical edge are moved to occupy opposite corners of the square so
their distance goes from 1 to 2. While this is only an increase of 1, it will be useful going
forward to think of the vertices connected by vertical edges as having gone from as close
together as possible (connected by an edge) to as far apart as possible.

Now consider the natural graph of A3, which is pictured below.
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000 100

001

010 110

101

111011

There are 12 edges in the graph. After permuting the labels of the graph, we want
12

3
= 4

pairs of adjacent vertices to be sent to adjacent vertices, 4 pairs of adjacent vertices to be
sent to vertices with a distance of 2, and 4 pairs of adjacent vertices to be sent to vertices
with a distance of 3.

Looking at the diagram, we can think of the natural graph of A3 as being composed of
two copies of the natural graph of A2 laid horizontally on top of each other. The labelling
also has some coherence with the labelling of A2. First, label the bottom and top square
as if they were copies of the natural graph of A2, making sure to label vertically-adjacent
vertices in the same way. Next, append a 0 to the right of every label in the bottom layer
and append a 1 to the right of every label in the top layer.

To permute the labels in the way we want, we will first perform the same permutation on
each layer as we did in A2. In each layer, this moves two pairs of labels from adjacent
vertices so that they are at a distance of 2. There are also two pairs of adjacent vertices
in each layer that remain adjacent after permuting. The four pairs of vertically-adjacent
vertices will remain vertically adjacent because we will have performed the exact same
permutation in each layer. At this point, the labels on four pairs of adjacent vertices have
been sent to vertices that are 2 apart and the other 8 pairs of labels remain on adjacent
vertices. The diagram below shows what we have done so far:

000 100

001

010 110

101

111011

000 100

001

110 010

101

011111

The second and final step is to swap the corners in the top layer. This will have the effect
of moving the labels on vertically-adjacent vertices to be as far apart as possible. In a
“cube”, this means they will end up at opposite ends of a “space diagonal”. Swapping the
corners in a layer preserves the distance between all pairs of vertices in that layer. This
means the net effect of the second step is to move four pairs of adjacent vertices so that
they are at a distance of 3. The overall effect is shown below:
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000 100

001

010 110

101

111011

000 100

001

110 010

101

011111

000 100

011

110 010

111

001101

In the table below, the first column has the 12 pairs from E3 and the second column has
the distance of the corresponding pair in the relabelled graph.

{a, b} new distance

{000, 001} 3
{000, 010} 2
{000, 100} 1
{001, 011} 2
{001, 101} 1
{010, 011} 3
{010, 110} 1
{011, 111} 1
{100, 101} 3
{100, 110} 2
{101, 111} 2
{110, 111} 3

As n grows, the natural graph of An gets harder and harder to draw in a useful way, so
we need some notation to help translate the geometric idea into symbols. First, we will
clarify what we actually want.

Suppose f is a function with domain An and codomain An. This means f is a function
that takes elements of An as input and also outputs elements of An. When we talk about
a permutation of An, we really mean a function f with domain and codomain both equal
to An that is a bijection. For a brief discussion about what a bijection is, you can consult
Appendix 1 from the solution to the February 2023 problem. In the context of this solution,
a function from An to An is a permutation if every possible output is attained by exactly
one input. For example, the function f with domain and codomain A2 given by

f(00) = 11

f(01) = 01

f(10) = 00

f(11) = 10

is a bijection from A2 to A2. Every possible output is attained (the four elements of A2

appear on the right side of the displayed equations above) and no output is attained more
than once. If you think about it, every way to order the elements of A2 (a permutation)
corresponds to exactly one such function: choose an order of the elements, then write them
in that order in the second column above. It will not be important for this solution, but
it might help you to understand this connection if you convince yourself that there are
exactly 4! = 24 bijections from A2 to itself.
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A rearrangement of the labels in the natural graph of An can be thought of as a bijection
from An to itself. If f is such a function, then f(a) is equal to the original label of the
vertex to which the label a is sent by the permutation. For example, the permutation for
A3 corresponding to the relabelling from earlier (shown below)

000 100

001

010 110

101

111011

000 100

011

110 010

111

001101

is given by

f(000) = 000

f(001) = 111

f(010) = 110

f(011) = 001

f(100) = 100

f(101) = 011

f(110) = 010

f(111) = 101

For example, the fourth of the displayed equations above is f(011) = 001 because in the
second diagram 011 appears where 001 originally appeared.

This is an important observation because we can now recognize distance in the relabelled
graph as a Hamming distance. The distance between a and b in the relabelled graph is
equal to the distance between f(a) and f(b) in the original graph. By part (a), this means
the distance between a and b in the relabelled graph is equal to d(f(a), f(b)).

We can now formally articulate what we seek. For each n, we would like a function fn
with domain and codomain both equal to An with the following properties.

• fn is a permutation of An (a bijection).

• Among the n2n−1 pairs {a, b} from En, d(fn(a), fn(b)) takes on each value from 1
through n exactly 2n−1 times.

It may be a good idea to digest what has been said so far, possibly going back to see how
this applies to A2 and A3.

We can now define fn for each n, but the definition will be recursive, so we need a bit
more notation. For an element a in An where n ≥ 1, we will write a|0 to mean the
element of An+1 that is obtained by appending a 0 to the right end of a. For example,
00110|0 = 001100. Similarly, a|1 is the element of An+1 obtained by appending 1 to the
right end of a. Also, we will denote by a the element of An obtained by changing every
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coordinate of a from 0 to 1 or 1 to 0, as appropriate. For example, if a = 0010111, then
a = 1101000.

Starting with n = 1 (which we have not addressed up to this point) we will let f1(a) = a.
That is, f1(a) is the identity function. The elements of A1 are 0 and 1, and f1(0) = 0 and
f1(1) = 1. We now continue recursively. For n ≥ 1, we define fn+1 from fn as follows.

• If a ∈ An+1 is of the form b|0 for some b ∈ An, then fn+1(a) = fn(b)|0.

• If a ∈ An+1 is of the form b|1 for some b ∈ An, then fn+1(a) = fn(b)|1.

Notice that the above instructions indeed explain how to evaluate fn+1 at every element of
An+1 because each element of An+1 can be constructed in exactly one way by appending
either a 0 or a 1 to the right of an element from An. As an example, we will determine
exactly what f2 does to each element in A2. For 00, we have to use the rule in the first
bullet point because the rightmost digit is 0. f1(0) = 0, so we have that f2(00) = 00.
Since the second digit of 10 is also 0 and f1(1) = 1, we get that f2(10) = 10. For 01, we
have to use the rule in the second bullet point. This means f2(01) = f1(0)|1 = 0|1 = 11.
Finally, f2(11) = f1(1)|1 = 1|1 = 01. This is exactly the function from A2 to itself
discussed earlier. We leave it as an exercise to verify that f3 is exactly the permutation of
A3 discussed earlier.

We can now prove by induction that fn does what we want for every n. Before doing
that, we will discuss how this function corresponds to the geometric idea from earlier. The
elements in An+1 can be obtained by taking each element of An and appending a 0 to
the right and a 1 to the right, in a way getting two elements in An+1 from every element
in An. By this reasoning, An+1 can be thought of as two copies of An: elements ending
in 0 and elements ending in 1. If you look at the natural graph of A3 above, these two
copies are exactly the “bottom” and the “top” squares. The way fn+1 is defined is to
operate differently on the two copies of An, since how fn+1(a) is computed depends on the
rightmost digit of a. In other words, it depends on which copy of An a belongs to. If a
has a rightmost digit of 0, then fn+1 essentially does what fn did. This corresponds to the
bottom face of the cube being permuted exactly as the square was. If the rightmost digit
of a is 1, then a is in the other copy, corresponding to the top face of the cube in the case
of A3. In this situation, we apply fn to the element of An obtained by removing the last
digit, just as we would if the rightmost digit were 0. However, we then switch every digit,
and this corresponds to “swapping the diagonals” in A3. Finally, a 1 is appended to the
right of the result, which corresponds to making sure that elements in the top of the cube
stay in the top of the cube during the permutation.

For n = 1, it is an exercise in understanding definitions to see that fn satisfies the given
conditions. We have already established this for n = 2, and n = 3 can be verified by
confirming that f3 is exactly the permutation from earlier that we verified worked.

We now assume, for some n ≥ 1, that fn is a permutation of An with the property that
among pairs {a, b} from En, d(fn(a), fn(b)) takes on every value from 1 through n exactly
2n−1 times. We will show that fn+1 is a permutation of An+1 with the property that
among pairs {a, b} from En+1, d(fn+1(a), fn+1(b)) takes on every value from 1 through
n + 1 exactly 2n times.

To see that fn+1 is a permutation, let a ∈ An be arbitrary. Since fn is a permutation,
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there is a unique element b ∈ An such that fn(b) = a and a unique element c ∈ An such
that fn(c) = a. Using the definition of fn+1, we have fn+1(b|0) = fn(b)|0 = a|0 and
fn+1(c|1) = fn(c)|1 = a|1 = a|1. Since every element in An+1 is of the form a|0 or a|1
for some a ∈ An, we have shown that every element of An+1 is in the range of fn+1. Now
suppose a1,a2,a3, . . . ,a2n+1 are the elements of An+1 (in some order). We have shown
that every element of An+1 appears in the list

fn+1(a1), fn+1(a2), . . . , fn+1(a2n+1)

at least once. There are 2n+1 elements in the list above and 2n+1 elements in An+1, so
every element of An+1 must appear in the list above exactly once. In other words, fn+1 is
a permutation of An+1.

To prove the other fact about fn+1, we will use the fact that d(a, b) = d(a, b) for any a
and b. It is left as an exercise to verify this.

Suppose k is a positive integer such that 1 ≤ k ≤ n. By induction, there are exactly 2n−1

pairs {a, b} in En with d(fn(a), fn(b)) = k. If {a, b} is one of these 2n−1 pairs, we have

d(fn+1(a|0), fn+1(b|0)) = d(fn(a)|0, fn(b)|0)

= d(fn(a), fn(b))

= k

where the second equality is because the elements in question agree in the last coordi-
nate, so their Hamming distance is equal to the Hamming distance between the elements
obtained by removing the rightmost elements. We similarly have that

d(fn+1(a|1), fn+1(b|1)) = d(fn(a)|1, fn(b)|1)

= d(fn(a), fn(b))

= d(fn(a), fn(b))

= k

Therefore, there are 2×2n−1 = 2n pairs {a, b} from En+1 satisfying d(fn+1(a), fn+1(b)) = k
for each 1 ≤ k ≤ n.

Next, for any a ∈ An, we have

d(fn+1(a|0), fn+1(a|1)) = d(fn(a)|0, fn(a)|1)

= d(fn(a), fn(a)) + 1

= n + 1

where the second equality is because we know that the two elements being handed to
d have different rightmost coordinates, so their Hamming distance is one more than the
Hamming distance between the elements obtained by removing the rightmost coordinates.
The third equality is because fn(a) and fn(a) differ in all n coordaintes by definition.

There are 2n elements of An, and each pair {a|0,a|1} is in En+1, so we get 2n pairs from
En+1 such that d(fn+1(a), fn+1(b)) = n + 1. For each k from 1 through n + 1, we have
found 2n pairs {a, b} from En+1 with the property that d(fn+1(a), fn+1(b)) = k. This
completes the proof.
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