
Problem of the Month
Solution to Problem 6: March 2023

Note: In this solution, we will take for granted that if n is a positive integer that is not a perfect
square, then

√
n is an irrational number.

(a) Since
√

2 ≈ 1.4142 and
√

3 ≈ 1.7320, we have that f(2) = 4 and f(3) = 7.

In the table below, the first column contains the integers n from 37 through 48, the second
column contains

√
n truncated to four digits past the decimal point, and the third column

contains f(n).

n
√
n f(n)

37 6.0827 0
38 6.1644 1
39 6.2449 2
40 6.3245 3
41 6.4031 4
42 6.4807 4
43 6.5574 5
44 6.6332 6
45 6.7082 7
46 6.7823 7
47 6.8556 8
48 6.9282 9

Among the values of f(n) for n from 37 through 48, each integer from 0 through 9 appears
exactly once except for 4 and 7, which appear exactly twice each. Notice that 4 and 7 are
the values of f(2) and f(3), respectively.

(b) Since
√

5 ≈ 2.2360,
√

6 ≈ 2.4494,
√

7 ≈ 2.6457, and
√

8 ≈ 2.8284, we have that f(5) = 2,
f(6) = 4, f(7) = 6, and f(8) = 8.

In the table below, the first column contains the integers n from 50 through 63, the second
column contains

√
n truncated to four digits past the decimal point, and the third column

contains f(n).
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n
√
n f(n)

50 7.0710 0
51 7.1414 1
52 7.2111 2
53 7.2801 2
54 7.3484 3
55 7.4161 4
56 7.4833 4
57 7.5498 5
58 7.6157 6
59 7.6811 6
60 7.7459 7
61 7.8102 8
62 7.8740 8
63 7.9372 9

Similar to part (a), observe that among the values of f(n) for n between 50 and 63 inclusive,
every integer from 0 through 9 appears either once or twice, and the integers that appear
twice are exactly f(5) = 2, f(6) = 4, f(7) = 6, and f(8) = 8.

(c) Suppose m is a positive integer in the list n2 + 1, n2 + 2, . . . , n2 + 2n. This is equivalent
to n2 < m < (n + 1)2, which is equivalent to n <

√
m < n + 1 since m, n, and n + 1 are

non-negative.

Fix an integer d satisfying 0 ≤ d ≤ 9 and assume that m is an integer satisfying both
n2 < m < (n + 1)2 and f(m) = d. That f(m) = d means d is the first digit past the
decimal point in the decimal expansion of

√
m. That

√
m is between n and n + 1 means

the integer part of
√
m is n. Therefore,

√
m is at least

d

10
more than n and at most

d + 1

10
more than n. Since

√
m is between two consecutive perfect squares, it is not a perfect

square, which means
√
m is irrational. Putting this together, we get that

n +
d

10
<
√
m < n +

d + 1

10

where the strict inequalities are justified by the irrationality of
√
m. We are also assuming

that n is a positive multiple of 5, which means there is some positive integer k such that
n = 5k.

The quantities in the chain of inequalities above are all positive, which means(
n +

d

10

)2

<
√
m

2
<

(
n +

d + 1

10

)2

Expanding and substituting n = 5k, we get

25k2 + dk +
d2

100
< m < 25k2 + (d + 1)k +

(d + 1)2

100

We will now count the number of integers that satisfy the inequalities above.
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Since the integer d satisfies 0 ≤ d ≤ 9, we must have that 0 ≤ d2

100
< 1. Therefore,

25k2 + dk +
d2

100
is between the consecutive integers 25k2 + dk and 25k2 + dk + 1, possibly

equal to the smaller of the two but not equal to the larger of the two. Since m is an integer

that is greater than 25k2 + dk +
d2

100
, we conclude that

25k2 + dk + 1 ≤ m

Similarly, 0 ≤ d ≤ 9 implies that 0 <
(d + 1)2

100
≤ 1. This means 25k2 + (d+ 1)k +

(d + 1)2

100
is between the consecutive integers 25k2 + (d+ 1)k and 25k2 + (d+ 1)k + 1, possibly equal
to the larger of the two but not equal to the smaller of the two. Since m is an integer that

is smaller than 25k2 + (d + 1)k +
(d + 1)2

100
, we can conclude that m ≤ 25k2 + (d + 1)k.

Combining this inequality with the inequality from earlier, we now have that

25k2 + dk + 1 ≤ m ≤ 25k2 + (d + 1)k

The number of integers m that satisfy this inequality is

(25k2 + (d + 1)k)− (25k2 + dk) = k

We have now shown the following: For each integer d satisfying 0 ≤ d ≤ 9, there are at
most k integers m in the list n2 + 1, n2 + 2, . . . , n2 + 2n with the property that f(m) = d.
There are 2n integers in the list above and only ten different values that the function f
can output. Since 10k = 2n, there is no possibility other than that f takes every possible

value exactly k =
n

5
times.

(d) To get an idea of how to proceed, we first discuss the results of parts (a), (b), and (c).

In part (a), we saw that for values of m between 12 and 22, the function f takes on every
possible value the same number of times (zero) with the exception of 4 and 7, which occur
one extra time each. For values of m between 62 and 72, the function f takes on every
possible value the same number of times (one) with the exception of 4 and 7, which occur
one extra time each.

Similarly, in part (b) we observed that f takes on every value the same number of times,
with the exceptions of 2, 4, 6, and 8 when m ranges between 22 and 32 as well as between
72 and 82.

The result of part (c) was that if n is a multiple of 5, then f(m) takes on every possible
value the same number of times (with no exceptions) as m ranges over the integers strictly
between n2 and (n + 1)2.

The patterns in part (a) and (b) continue, and there are similar patterns for other ranges
between perfect squares. A bit more precisely, if n is a positive integer, then as m ranges
over the integers between n2 and (n + 1)2, f(m) takes on every possible value the same
number of times, possibly with some exceptions that occur one extra time each. These
exceptional values depend only on the remainder when n is divided by 5.

Even more precisely, the following five claims are true. The claims are numbered to
correspond to remainders after division by 5.
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Claim 0: Suppose n = 5k for some integer k ≥ 0. As m ranges over the integers strictly
between n2 and (n + 1)2, f(m) takes every value from 0 through 9 exactly k times.

Claim 1: Suppose n = 5k + 1 for some integer k ≥ 0. As m ranges over the integers strictly
between n2 and (n + 1)2, f(m) takes the values 4 and 7 a total of k + 1 times each
and takes every other value k times.

Claim 2: Suppose n = 5k + 2 for some integer k ≥ 0. As m ranges over the integers strictly
between n2 and (n + 1)2, f(m) takes the values 2, 4, 6, and 8 a total of k + 1 times
each and takes every other value k times.

Claim 3: Suppose n = 5k + 3 for some integer k ≥ 0. As m ranges over the integers strictly
between n2 and (n + 1)2, f(m) takes the values 1, 3, 4, 6, 7, and 8 a total of k + 1
times each and takes every other value k times.

Claim 4: Suppose n = 5k + 4 for some integer k ≥ 0. As m ranges over the integers strictly
between n2 and (n + 1)2, f(m) takes the values 1, 2, 3, 4, 5, 6, 7, and 8 a total of
k + 1 times each and takes the values 0 and 9 a total of k times each.

In part (c), we showed that Claim 0 is true. Before proving Claims 1, 2, 3, and 4, we will
answer the actual question which was to determine how many times each digit occurs in
the list

f(1), f(2), f(3), . . . , f(104)

Because 104 is a perfect square, f(0) = f(104) = 0, so we can instead count the number
of times each digit occurs in the slightly different list

f(0), f(1), f(2), . . . , f(104 − 1)

There are 100 perfect squares among the integers from 0 through 104− 1, so there are 100
occurrences of 0 in the list that come from perfect squares.

For every other integer m in the list 0, 1, 2, 3, 4, . . . , 104−1, there are unique integers k and
r with 0 ≤ k ≤ 19 and 0 ≤ r ≤ 4 with the property that (5k + r)2 < m < (5k + r + 1)2.

Suppose d is a non-zero digit. For fixed k and r, as we let m take the values strictly between
(5k+r)2 and (5k+r+1)2, Claim r tells us whether the digit d occurs either k times or k+1
times in that range. We are considering values of m satisfying (5k+r)2 < m < (5k+r+1)2

for every pair (k, r) with 0 ≤ k ≤ 19 and 0 ≤ r ≤ 4. For every pair of the form (k, 0),
we get k occurrences of d (see Claim 0). For every pair of the form (k, 1), we always get
k occurrences or we always get k + 1 occurrences of d, depending on what Claim 1 says
about the digit d. Continuing with this reasoning, the number of occurrences of d in the
list f(0), f(1), f(2), . . . , f(104 − 1) can be expressed in the form

a(0 + 1 + 2 + · · ·+ 18 + 19) + b(1 + 2 + 3 + · · ·+ 19 + 20) = 190a + 210b

where a is the number of values of r for which Claims 0 through 4 say there are k occurrences
of d, and b is the number of values of r for which Claims 0 through 4 say there are k + 1
occurrences of d.

For example, for d = 1, there are k occurrences when r = 0, r = 1, and r = 2, and there
are k + 1 occurrences when r = 3 and r = 4. Therefore, with d = 1, we have a = 3 and
b = 2, so the number of times that d = 1 occurs in the list is 3× 190 + 2× 210 = 990.
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Using Claims 0 through 4, the table below summarizes the count for the remaining non-
zero digits. In the first column, the digit d appears, in the second column the value of a
appears, in the third column, the value of b occurs, and in the fourth column, 190a+ 210b
appears, which is the number of times d appears in the list.

d a b 190a + 210b

1 3 2 990
2 3 2 990
3 3 2 990
4 1 4 1030
5 4 1 970
6 2 3 1010
7 2 3 1010
8 2 3 1010
9 5 0 950

Finally, for d = 0, we already have 100 occurrences of 0 in the list coming from the perfect
squares. Otherwise, we can use the exact same technique as above to count the number
of 0s in the list coming from integers that are not perfect squares. For d = 0, a = 5 and
b = 0, so there are 5(190) + 0(210) + 100 = 1050 occurrences of the digit 0 in the list
f(0), f(1), f(2), . . . , f(104 − 1).

We will now prove Claims 1 through 4.

Suppose k is a non-negative integer, r is 0, 1, 2, 3, or 4, and that d is a digit between
0 and 9 inclusive. We wish to count the number of integers m such that f(m) = d and
(5k + r)2 < m < (5k + r + 1)2. Specifically, we want to show that this number is either k
or k + 1 depending on r and d in the way delineated in Claims 0 through 4.

The condition (5k + r)2 < m < (5k + r + 1)2 is equivalent to 5k + r <
√
m < 5k + r + 1,

and this combined with f(m) = d (note that m is not a perfect square and that 5k + r
and 5k + r + 1 are consecutive integers) is equivalent to

5k + r +
d

10
<
√
m < 5k + r +

(d + 1)

10
.

Since everything is non-negative, everything can be squared to get the equivalent chain of
inequalities

(5k + r)2 +
2(5k + r)d

10
+

d2

100
< m < (5k + r)2 +

2(5k + r)(d + 1)

10
+

(d + 1)2

100
.

After some expansion, we have

(5k + r)2 + kd +
2rd

10
+

d2

100
< m < (5k + r)2 + kd + k +

2r(d + 1)

10
+

(d + 1)2

100
.

We are interested in how many integers m satisfy the chain of inequalities above. Since
(5k + r)2 + kd is an integer, the number of integers m satisfying the inequalities above is
the same as the number of integers m′ that satisfy

2rd

10
+

d2

100
< m′ < k +

2r(d + 1)

10
+

(d + 1)2

100
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and after combining fractions on the left and right, we get

20rd + d2

100
< m′ < k +

20r(d + 1) + (d + 1)2

100
(∗)

Suppose
20rd + d2

100
and

20r(d + 1) + (d + 1)2

100
are both strictly between 0 and 1. Then the

integers m′ satisfying (∗) are precisely the integers 1 through k. More generally, we will
show that whether there are k or k + 1 integers depends on whether or not the quantities
20rd + d2

100
and

20r(d + 1) + (d + 1)2

100
are between the same pair of consecutive integers.

To give an idea of how the argument will proceed, consider the situation when r = 1 and

d = 4. Then
20rd + d2

100
=

96

100
, but

20r(d + 1) + (d + 1)2

100
=

125

100
. Thus, (∗) becomes

96

100
< m′ < k +

125

100

The integers m′ = 1 through m′ = k + 1 satisfy these inequalities, for a total of k + 1
integers.

Observe that

20r(d + 1) + (d + 1)2

100
− 20rd + d2

100
=

(20rd + 20r + d2 + 2d + 1)− (20rd + d2)

100

=
20r + 2d + 1

100

≤ 20(4) + 2(9) + 1

100
(since r ≤ 4, d ≤ 19)

=
99

100

This means the difference between
20rd + d2

100
and

20r(d + 1) + (d + 1)2

100
is less than 1,

which leads to the following two possibilities.

Possibility 1: There is an integer a so that

a ≤ 20rd + d2

100
<

20r(d + 1) + (d + 1)2

100
≤ a + 1

In this case, the integers satisfying (∗) are a + 1, a + 2, a + 3, and so on through a + k for
a total of k integers.

Possibility 2: There is some integer a with the property that

a <
20rd + d2

100
< a + 1 <

20r(d + 1) + (d + 1)2

100
< a + 2

In this case, the integers satisfying (∗) are a + 1 through a + 1 + k, for a total of k + 1
integers.

We have now shown that there will be k + 1 integers satisfying (∗) exactly when there

is an integer strictly between
20rd + d2

100
and

20r(d + 1) + (d + 1)2

100
. Multiplying through
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by 100, this is equivalent to there being a multiple of 100 strictly between 20rd + d2 and
20r(d + 1) + (d + 1)2

The table below contains the values of 20rd + d2 for every 0 ≤ r ≤ 4 and 0 ≤ d ≤ 9.
The columns after the first are indexed by a value of d from 0 through 9 from left to
right and the rows after the first are indexed by values of r from 0 through 4 from top
to bottom. The cell in the row corresponding to r and the column corresponding to d
contains 20rd + d2. Cells are highlighted if there is a multiple of 100 between the value in
the cell and the value in the cell immediately to its right.

dr 0 1 2 3 4 5 6 7 8 9 10

0 0 1 4 9 16 25 36 49 64 81 100
1 0 21 44 69 96 125 156 189 224 261 300
2 0 41 84 129 176 225 276 329 384 441 500
3 0 61 124 189 256 325 396 469 544 621 700
4 0 81 164 249 336 425 516 609 704 801 900

The highlighted cells correspond to pairs (r, d) for which 20rd + d2 is less than a multiple
of 100 and 20r(d + 1) + (d + 1)2 is greater than that multiple of 100. As noted above,
these correspond to the pairs (r, d) for which k + 1 integers satisfy (∗). For r = 0, we see
no values of d, which gives another proof of Claim 0. For r = 1, the values of d for which
there are k + 1 integers are d = 4 and d = 7, which proves Claim 1. Continuing, the data
in the table above verifies Claims 0 through 4.
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