
Problem of the Month
Solution to Problem 5: February 2023

Definition 1: For integers a and b, we say that a divides b if there is an integer c with the
property that ac = b. In this case, we write a | b.

The phrases “a is a divisor of b” and “b is a multiple of a” both have the exact same meaning
as “a divides b”. Notice that, by this definition, every integer is a divisor of 0, but the only
divisor of 0 is 0 itself. We give a few facts that will be used in this solution. Their proofs are
not included.

Fact 1: If a and b are positive integers such that a | b, then a ≤ b.

Fact 2: If a, b, and c are integers such that a | b and a | c, then a | (b− c) and a | (b + c).

Fact 3: If a, b, and c are integers such that a | b and b | c, then a | c.

(a) Suppose (a, b) is a splendid sequence. By definition, this means a | b and b | a. Since the
integers in a splendid sequence must be positive, Fact 1 implies that a ≤ b and b ≤ a,
which implies a = b. If p is a prime number such that p | a, then p | b by Fact 3. However,
no prime number can divide both a and b beacuse (a, b) is splendid. Therefore, no prime
number divides a. Similarly, no prime number divides b, and so a = b = 1.

Therefore, the only splendid sequence of length 2 is (1, 1).

(b) There are several “generic” sequences that one might find. The simplest is probably the
sequence (1, 1, 1, . . . , 1). That is, the sequence (a1, a2, a3, . . . , an) with ai = 1 for all i is
always a splendid sequence. This is because no prime number divides 1, and 1 divides
every integer. Another splendid sequence is (1, 2, 3, 4, . . . , n − 1, 1). For each integer k in
this sequence, other than the 1’s on the end and n − 1, the integers next to it are k − 1
and k + 1, so their sum is (k − 1) + (k + 1) = 2k, which is a multiple of k. The integers
next to n− 1 are n− 2 and 1, which have a sum of n− 1.

In the remaining parts of the solution as well as in the Appendix, we will often denote a sequence
by a bold letter. For example, we might refer to the sequence (a1, a2, . . . , an) by x.

(c) Assume that x = (a1, a2, . . . , an) is a splendid sequence. We will show that

y = (a1, a2, . . . , ai, c, ai+1, . . . , an)

is a splendid sequence when c = ai + ai+1.

If some prime number p divides every integer in y, then it also divides every integer in x.
Since x is a splendid sequence, there is no such prime number, so no prime number divides
all of the integers in y.

If i = 1, then y = (a1, c, a2, a3, . . . , an) and c = a1 + a2. Since x is a splendid sequence,
a1 | a2. We also have that a1 | a1, so a1 | (a1 + a2) or a1 | c by Fact 2. Since every integer
divides itself, c | (a1 + a2). To see that a2 | (c + a3), we note that a2 | (a1 + a3) because x
is splendid and a2 | a2 because every integer divides itself. By Fact 2, a2 | (a1 + a2 + a3)
so a2 | (c + a3). The integers a3 through an all have exactly the same neighbours in y as
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they do in x, which is a splendid sequence, so y satisfies all other divisibility conditions
required for it to be a splendid sequence.

If i = n−1, then y is splendid by a similar argument to the one in the previous paragraph.

If 1 < i < n− 1, then y = (a1, a2, . . . , ai−1, ai, c, ai+1, ai+2, . . . , an). When k < i and when
k > i + 1, ak divides the sum of its neighbours because it has the exact same neighbours
as it did in x. In y, the neighbours of the integer ai are ai−1 and c. Since x is a splendid
sequence, ai | (ai−1+ai+1). We also have that ai | ai, and so by Fact 2, ai | (ai+ai−1+ai+1)
which means ai | (ai−1 + c). By similar reasoning, ai+1 | (c + ai+2). The integer c is equal
to the sum of its neighbours in y by definition, so it also divides the sum of its neighbours.
Therefore, every integer in y divides the sum of its neighbours. We already argued that
no prime number divides every integer in y, so y is a splendid sequence.

(d) Suppose x = (a1, a2, a3, . . . , an) is a splendid sequence. If n = 2, then the solution to part
(a) implies that a1 = an = 1.

Suppose n ≥ 3. By definition, we have that an | an−1 and that an−1 | (an−2 + an). By
Fact 3, an | (an−2 +an). Since an | an, we can apply Fact 2 to get that an | (an−2 +an−an)
which implies that an | an−2.

Since x is splendid, we also have that an−2 | (an−3 + an−1). We have just shown that an
divides an−2, so by Fact 3, an | (an−3 + an−1). We also have that an | an−1, so Fact 2
implies an | (an−3 + an−1 − an−1) or an | an−3. Continuing in this way, we can show that
an | ai for all i with 1 ≤ i ≤ n. By the condition that no prime number can divide every
integer in x, we conclude that an = 1. Essentially the same argument shows that a1 = 1.

(e) Most of the work is to prove these two claims.

Claim 1: If (a1, a2, . . . , an) is a splendid sequence of length n ≥ 3 that contains at least one
integer that is greater than 1, then there is some i with 1 < n such that ai = ai−1+ai+1 and
(a1, a2, . . . , ai−1, ai+1, ai+2, . . . , an) is a splendid sequence. That is, there is an integer in
the sequence that is equal to the sum of its neighbours, and if it is removed, the remaining
shorter sequence is a splendid sequence.

Claim 2: If (a1, a2, . . . , an) is a splendid sequence of length n ≥ 2, then ai ≤ 2n−2 for
every i.

Proof of Claim 1. To prove Claim 1, suppose x = (a1, a2, . . . , an) is a splendid sequence
with at least one integer greater than 1 and let i be such that ai is the largest integer in
the sequence, choosing the rightmost occurrence if there is a “tie”. More precisely, i is the
largest integer with the property that ai ≥ aj for all 1 ≤ j ≤ n.

By part (d), an = a1 = 1, and since there is at least one integer in x that is greater than
1, neither a1 nor an can be the largest integer in x, which means 1 < i < n. The choice
of i ensures that ai−1 ≤ ai and ai+1 ≤ ai. If ai = ai+1, then since ai is the largest integer
in the sequence, this would imply that ai is not the rightmost occurrence of the largest
integer in the sequence. Therefore, we actually have that ai+1 < ai.

The inequalities ai−1 ≤ ai and ai+1 < ai imply that ai−1 + ai+1 < 2ai and since x is
splendid, ai | (ai−1 + ai+1). As well, all integers in a splendid sequence are positive, which
means that ai−1 + ai+1 is a positive multiple of ai that is less than 2ai. The only such
multiple is ai itself, and so ai−1 + ai+1 = ai.
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We have shown that one of the integers in x is equal to the sum of its neighbours. To
finish proving the claim, we need to show that y = (a1, a2, . . . , ai−1, ai+1, ai+2, . . . , an) is
a splendid sequence. In y, only ai−1 and ai+1 have different neighbours than they did
in x, so the divisibility conditions we need to verify are that ai−1 | (ai−2 + ai+1) and
ai+1 | (ai−1 + ai+2)

We know that ai−1 | (ai−2 +ai) and we have just shown that ai = ai−1 +ai+1. Substituting,
we get that ai−1 | (ai−2 + ai−1 + ai+1). By Fact 2, ai−1 | (ai−2 + ai−1 + ai+1 − ai−1) or
ai−1 | (ai−2 +ai+1). A nearly identical argument shows that ai+1 | (ai−1 +ai+2). Therefore,
y satisfies the divisibility conditions.

If a prime number p divides every integer in y, then p | ai−1 and p | ai+1, so p | ai by Fact 2
since ai = ai−1 + ai+1. This would mean p divides every integer in x, which is not the case
since x is splendid.

We will now prove Claim 2 by mathematical induction. The essence of the proof is that,
by Claim 1, the largest integer in a splendid sequence must be the sum of two integers
in a shorter splendid sequence. Therefore, the maximum size of an integer in a splendid
sequence of length n + 1 is at most twice the maximum size of an integer in a splendid
sequence of length n. This means that there is always a fixed upper bound on the size of
integers in a splendid sequence of a fixed length.

Proof of Claim 2. To get an idea of how the induction will work, we first prove this for
n = 2, n = 3, and n = 4. For n = 2, we showed in the solution to part (a) that
the only splendid sequence of length 2 is (1, 1). The largest element in this sequence is
1 = 20 = 22−2 = 2n−2, so the claim holds for n = 2.

Now suppose (a1, a2, a3) is a splendid sequence of length 3. If a1 = a2 = a3 = 1, then every
integer in the sequence is less than 23−2 = 2. Otherwise, since a1 = a3 = 1 by part (d),
Claim 1 implies that a2 = a1 + a3 = 1 + 1 = 2 is the largest integer in the sequence, so all
integers in the sequence are at most 2 = 23−2.

Continuing to n = 4, suppose (a1, a2, a3, a4) is a splendid sequence. Again, if the sequence
consists entirely of 1’s, then ai ≤ 24−2 = 4 for all i. Otherwise, either (a1, a3, a4) is a
splendid sequence of length 3 and a2 = a1 + a3, or (a1, a2, a4) is a splendid sequence of
length 3 and a3 = a2 +a4. Either way, three of the four integers are in a splendid sequence
of length 3, and the fourth is the sum of two integers in a splendid sequence of length
3. We just showed that an integer in a splendid sequence of length 3 is at most 23−2, so
an integer in a splendid sequence of length 4 is at most 23−2 + 23−2 = 2 × 23−2 = 24−2.
Therefore, no integer in the sequence (a1, a2, a3, a4) can exceed 24−2.

Now for the inductive step. Suppose, for some n ≥ 2, that every integer in every splendid
sequence of length n is at most 2n−2. This is our inductive hypothesis. Consider a splen-
did sequence (a1, a2, . . . , an, an+1) of length n + 1. If ai = 1 for all i, then ai ≤ 2n−2

for all i. Otherwise, Claim 1 implies that there is some i so that ai = ai−1 + ai+1

and (a1, a2, . . . , ai−1, ai+1, . . . , an, an+1) is a splendid sequence of length n. By the in-
ductive hypothesis, this means each of a1, a2, a3, . . . , ai−1, ai+1, . . . , an, and an+1 is
at most 2n−2, and since 2n−2 < 2(n+1)−2, each of these integers is at most 2(n+1)−2. For
ai, we have ai = ai−1 + ai+1 and since ai−1 ≤ 2n−2 and ai+1 ≤ 2n−2, we conclude that
ai ≤ 2n−2 + 2n−2 = 2(2n−2) = 2(n+1)−2 as well. We have shown that every integer in a
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splendid sequence of length n + 1 is at most 2(n+1)−1. This completes the induction and
the proof.

By Claim 2, every integer in a splendid sequence of length n is at most 2n−2. There are
only finitely many sequences of length n consisting of positive integers less than or equal
to 2n−2, regardless of whether they are splendid. Therefore, for fixed n, there are only
finitely many splendid sequences of length n.

The proof os part (f) will use some language about sets. Specifically, we will use the language of
injective, surjective, and bijective functions. If you have seen this before, you should be ready
to read the solution to part (f). Otherwise, we recommend reading Appendix 1 first.

(f) As pointed out in the hint, the number of splendid sequences of length n is equal to the

(n−1)st Catalan number. The nth Catalan number is equal to
1

n + 1

(
2n

n

)
, so the number

of splendid sequences of length n is
1

n

(
2n− 2

n− 1

)
. The sequence of Catalan numbers shows

up in many contexts. A useful example for this solution is given in Definition 2.

Definition 2: For each positive integer n ≥ 1, we call a sequence (b1, b2, . . . , bn) of positive
integers a tame sequence if b1 = 1 and bk+1 ≤ bk + 1 for every integer k with 1 ≤ k < n.
In other words, b1 = 1 and every other integer in the sequence is at most 1 more than the
previous integer.

The name tame sequence was made up for the purpose of this solution, but it is known
that the number of tame sequences of length n is equal to the nth Catalan number. There
are proofs of this in various places in the literature. For completeness, we have included a
proof in Appendix 2. It is stated as Claim 5.

Let Tn denote the set of tame sequences of length n and Sn denote the set of splendid
sequences of length n. We will show, for n ≥ 2, that there is a bijection with domain Tn−1

and codomain Sn. By the discussion in Appendix 1, this will show that the number of
splendid sequences of length n is the (n− 1)st Catalan number.

Recall from part (c) that if (a1, a2, . . . , an) is a splendid sequence of length n, then

(a1, a2, a3, . . . , ai, ai + ai+1, ai+1, . . . , an)

is a splendid sequence of length n + 1.

From this point on, it will be notationally useful to prepend a zero at the beginning of
splendid sequences. For example, the sequence (0, 1) will now be the unique splendid
sequence of length 1. The sequence (0, 1, 2, 5, 3, 1) is a splendid sequence of length 5. This
means that a splendid sequence of length n now has n + 1 integers, the first of which is
0. For instance, a1 = 0, a2 = 1, a3 = 2, a4 = 5, a5 = 3, and a6 = 1 is how we would
index the sequence (0, 1, 2, 5, 3, 1) going forward. Notice that the observation from part (c)
mentioned above also works if we insert the sum between the first and second integers, 0
and 1. You should convince yourself of this before moving on.

For each n ≥ 2, we define a function, fn, with domain Tn−1 and codomain Sn. The way
fn works is to use a tame sequence as a list of instructions to build a splendid sequence.
Consider a tame sequence x = (b1, b2, . . . , bn−1) of length n − 1. Starting with (0, 1), the
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unique splendid sequence of length 1, we read x from left to right and each integer in the
tame sequence tells us where to insert a sum to get a longer splendid sequence. Specifically,
in the kth step, the integer bk tells us that we should insert a sum between abk and abk+1

to get a longer splendid sequence.

For example, suppose n = 6 and the tame sequence is x = (1, 2, 3, 2, 1, 1). Start with
(0, 1), which has a1 = 0 and a1 = 1. The first integer in x is 1, so in the first step we
insert the sum between a1 and a2. This means we go from (0, 1) to (0, 0 + 1, 1) = (0, 1, 1).
To start the second step, we reindex to a1 = 0, a2 = 1, and a3 = 1. The next integer
in x is 2, so we insert the sum between a2 and a3 to get (0, 1, 1 + 1, 1) = (0, 1, 2, 1).
The next integer in x is 3, so we insert the sum between the third and fourth integers in
the current splendid sequence to get (0, 1, 2, 2 + 1, 1) = (0, 1, 2, 3, 1). Continuing, we get
(0, 1, 1 + 2, 2, 3, 1) = (0, 1, 3, 2, 3, 1), followed by (0, 0 + 1, 1, 3, 2, 3, 1) = (0, 1, 1, 3, 2, 3, 1),
and finally (0, 0 + 1, 1, 1, 3, 2, 3, 1) = (0, 1, 1, 1, 3, 2, 3, 1). Thus, f7(x) = (0, 1, 1, 1, 3, 2, 3, 1).

By part (c), if x is a tame sequence of length n − 1, then fn(x) is a splendid sequence
of length n. Also note that at the start of the kth step, the splendid sequence has k + 1
integers in it. Because of the way tame sequences are defined, the kth integer in a tame
sequence is at most k, so at each step, the splendid sequence is always long enough for the
instruction to makes sense.

For each n ≥ 2, we will show that the function fn is a bijection. The proof will be by
induction, but we first need a definition and then a useful fact.

Definition 3: For a splendid sequence (a1, a2, a3, . . . , an+1) of length n (remember that
a1 = 0), we say that ai is a peak if ai = ai−1 + ai+1.

By Claim 1 (see the solution to part (e)), every splendid sequence with an integer greater
than 1 has at least one peak. Moreover, if that peak is “removed”, the resulting shorter
sequence is splendid. As well, with our new notation, if there is no integer greater than
1, then the sequence is of the form (0, 1, 1, 1, . . . , 1) and the first (leftmost) 1 is its only
peak. If it is removed, the resulting shorter sequence is also splendid. Indeed, the reason
for introducing the 0 at the beginning was to avoid having to treat the sequence of all 1’s
separately in this part of the argument.

Now for the useful fact:

Claim 3: Suppose y = (a1, a2, . . . , an+1) is a splendid sequence of length n and that
x = (b1, b2, . . . , bn−1) is a tame sequence of length n − 1 such that fn(x) = y. If we let
bn−1 = m, then am+1 is the leftmost peak of y.

A proof of Claim 3 is given at the end. We will now prove by induction that fn is a
bijection for all n ≥ 2.

It was observed in part (a) that the only splendid sequence of length 2 is y = (0, 1, 1).
As well, the only tame sequence of length 2 − 1 = 1 is x = (1). It is easily checked that
f2(x) = y. The sets T1 and S2 each have only one element. There is only one function
between two sets with one element, and it is always a bijection (convincing yourself of this
is a good exercise in understanding definitions). Therefore, f2 is a bijection.

For the inductive hypothesis, we assume for some n ≥ 2 that fn is a bijection.

We will show that fn+1 is a bijection, which means we need to show that it is injective and
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surjective. To show that it is surjective, we assume that y = (a1, a2, . . . , an, an+1, an+2) is
in Sn+1 and let ak be its leftmost peak. By Claim 1 from the solution to part (e), the se-
quence z = (a1, a2, . . . , ak−1, ak+1, . . . , an, an+1, an+2) is in Sn. Since fn is a bijection by the
inductive hypothesis, it is surjective, so there is some tame sequence w = (b1, b2, . . . , bn−1)
in Tn−1 with fn−1(w) = z. For convenience, let m = bn−1.

Recall that the leftmost peak of x is ak. Note that k 6= 1 since a1 = 0 can never be a peak.
Therefore, k ≥ 2 and so k − 1 ≥ 1.

Suppose ar is the leftmost peak of z. If r ≤ k − 2, then ar is a peak of y because ar
has the same neighbours in y and z when r ≤ k − 2. However, ak was chosen to be
the leftmost peak of y, so we cannot have r ≤ k − 2. This means r ≥ k − 1, but by
Claim 3, r = m + 1, so we get k − 1 ≤ m + 1. Combining with 1 ≤ k − 1, we have that
1 ≤ k− 1 ≤ m+ 1 = bn−1 + 1, which means the sequence (b1, b2, . . . , bn−1, k− 1) is a tame
sequence. We will call this tame sequence x.

To recap, the tame sequence x is obtained by appending k−1 to w, the splendid sequence
y is obtained by inserting the sum between the (k−1)st and kth integer in z, and fn(w) = z.
It follows that fn+1(x) = y. We have found x ∈ Tn such that fn+1(x) = y. Since y was
an arbitrary element of Sn+1, this concludes the proof that fn+1 is surjective.

We will now show that fn+1 is injective. To do this, we suppose x = (b1, b2, . . . , bn) and
w = (c1, c2, . . . , cn) are in Tn with fn+1(x) = fn+1(w). We will show that x = w.

Let y = (a1, a2, . . . , an+1, an+2) be such that y = fn+1(x) = fn+1(w). Suppose ak is
the leftmost peak of y. By Claim 3, both cn = k − 1 and bn = k − 1. This shows
that cn = bn. As well, if we set u = (b1, b2, . . . , bn−1) and v = (c1, c2, . . . , cn−1) and
z = (a1, a2, . . . , ak−1, ak+1, . . . , an+1, an+2), then fn(u) = fn(v) = z. By the inductive
hypothesis, fn is bijective, and hence, it is injective, so u = v. This shows that x and w
have the same first n − 1 integers, and since bn = cn as well, we have that x = w, which
concludes the proof that fn+1 is injective.

We have now shown that fn+1 is bijective, which proves that Tn−1 and Sn have the same
number of elements when n ≥ 2. Therefore, the number of splendid sequences of length n
is

1

n

(
2n− 2

n− 1

)
as claimed earlier.

Proof of Claim 3. The proof is by induction on n. It was noted earlier that the only tame
sequence of length 2− 1 = 1 is x = (1) (b1 = 1), the only splendid sequence of length 2 is
y = (0, 1, 1) (a1 = 0, a2 = 1, a3 = 1), and that f2(x) = y. The leftmost peak of y is a2
and 2 = b1 + 1. This shows that Claim 3 is true when n = 2.

For the inductive hypothesis, we suppose, for some n ≥ 2, that if y = (a1, a2, . . . , an, an+1)
is a splendid sequence of length n and x = (b1, b2, . . . , bn−1) is a tame sequence of length
n− 1 such that fn(x) = y, then the leftmost peak of the y is am+1 where m = bn−1.

Suppose y = (a1, a2, . . . , an, an+1, an+2) is a splendid sequence of length n + 1 and that
x = (b1, b2, . . . , bn) is a tame sequence of length n with fn+1(x) = y. Because of how
fn+1 is applied, am+1 is a peak of y. As well, z = (a1, a2, . . . , am, am+2, . . . , an+1, an+2) is
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a splendid sequence of length n such that fn(w) = z where w = (b1, b2, . . . , bn−1). For
convenience, set bn = m and bn−1 = k. Suppose the leftmost peak of y is ar for some r.
For now, assume r < m + 1. It is not difficult to show that it is impossible for a splendid
sequence to have two consecutive peaks. This means we must have r ≤ m−1 since r must
be at least two less than m + 1. If this happens, ar is also a peak of z because am−1 has
exactly the same neighbours in z and y. By the inductive hypothesis, ak+1 is the leftmost
peak of z, so r = k+1 and we get k+1 ≤ m−1. Since z is a tame sequence, bn ≤ bn−1 +1
or m ≤ k + 1. This implies that m ≤ k + 1 ≤ m − 1 so m ≤ m − 1, which is impossible.
Therefore, we cannot have r < m+ 1, which means am+1 is indeed the leftmost peak of y.
This completes the induction and the proof.

Appendix 1

Suppose X and Y are finite sets, where by “set” we mean an unordered collection of objects.
Suppose there is a “rule” that, for every element in the set X, produces an element in the set Y .
For instance, if the sets were X = {(1, 2), (5, 3), (1,−2)} and Y = {(4, 1), (5, 2), (9, 5)} (both sets
of three ordered pairs), the “rule” might be “square the second entry, then reverse the order”.
With this rule, (1, 2) becomes (4, 1), (5, 3) becomes (9, 5), and (1,−2) becomes (4, 1), so every
element of X is transformed into an element of Y . Such a rule is called a function. The set X
is called its “domain” and Y is called its “codomain”. If the function is named f , we would use
f(x) to denote the function applied to an element x in the domain. You have probably seen
functions before where the domain and codomain are all or part of the set of real numbers, but
the notion of a function applies in a much broader context. Below are three important properties
that functions may (or may not) have.

Injectivity: A function f with domain X and codomain Y is called injective if for every two
elements of the domain, x1 and x2, if x1 6= x2, then f(x1) 6= f(x2). In other words, a function
is injective if its application to two different elements of the domain always gives two different
results. Note that when trying to prove that a function is injective, we typically assume that
f(x1) = f(x2) and deduce that x1 = x2. You might want to think about this logic.

Surjectivity: A function f with domain X and codomain Y is called surjective if for every
y ∈ Y there exists an x ∈ X so that f(x) = y. In other words, a function is surjective if every
element of the codomain is the result of applying f to some element in the domain. [We might
also say that the range equals the codomain to describe surjectivity.]

Bijectivity: A function f is with domain X and codomain Y is called bijective or is a bijection
if it is both injective and surjective.

There is a lot to be said about injective, surjective, and bijective functions, but for us, the
useful observation will be that if X and Y are finite sets and there is a bijective function f with
domain X and codomain Y , then X and Y have the same number of elements. Indeed, if X has
m elements and Y has n elements, then being injective implies that m ≤ n and being surjective
implies that m ≥ n. Thus, being bijective implies that m ≤ n ≤ m, so m = n.

Observe that the example given at the beginning of this appendix is neither injective nor sur-
jective, so it is not bijective. However, X and Y do have the same number of elements. It is
important to keep in mind that we are only claiming that if there is a bijection from X to Y ,
then they have the same number of elements. There are six bijective functions from X to Y ,
the example we gave just happens to not be one of them.
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Appendix 2

We will now show that the number of tame sequences of length n is equal to the nth Catalan

number,
1

n + 1

(
2n

n

)
. The proof relies on the material from Appendix 1. As well, the results

here are well known and proofs of them can be found in the literature.

Definition 4: For each positive integer n, a sequence of 2n integers is called a jagged sequence
of length 2n if properties P1 and P2 hold:

P1 Exactly n of the integers are equal to 1 and exactly n of the integers are equal to −1.

P2 For each integer k with 1 ≤ k ≤ 2n, the sum of the first k integers in the sequence is
non-negative.

Claim 4: There are
1

n + 1

(
2n

n

)
jagged sequences of length 2n.

Proof of Claim 4. Fix a positive integer n. Let X be the set of sequences of 2n integers that
satisfy P1 and fail P2. Also, let Y be the set of sequences of 2n integers, n + 1 of which equal
−1 and n− 1 of which equal 1. We will show that X and Y have the same number of elements.

Suppose x = (a1, a2, . . . , a2n) is in X. Since x fails P2, there must be some k with 1 ≤ k ≤ 2n
and the property that the sum of the first k entries is negative. Let k be the smallest such
position in the sequence. If a1 = −1, then k = 1. This means n of the integers in the list
a2, a3, . . . , a2n are equal to 1, and n− 1 of them are equal to −1. Therefore, the sequence

(a1,−a2,−a3, . . . ,−a2n)

has n + 1 integers equal to −1 and n− 1 integers equal to 1, which means it is in Y .

If k 6= 1, then a1 ≥ 0, a1+a2 ≥ 0, and so on up to a1+a2+· · ·+ak−1 ≥ 0, but a1+a2+· · ·+ak < 0.
Since a1 +a2 + · · ·+ak−1 ≥ 0 but a1 +a2 + · · ·+ak−1 +ak < 0, we must have that ak is negative,
but ak = ±1, so ak = −1. As well, each of the ai are integers, so the two sums above are
integers, which means a1 + a2 + · · · + ak−1 = 0 and a1 + a2 + · · · + ak−1 + ak = −1 (there is
no other way to add −1 to a non negative integer and get a negative integer). The fact that
a1 + a2 + · · ·+ ak−1 = 0 implies that exactly half of the integers in the list a1, . . . , ak−1 are equal
to −1, and so the number of −1’s in (a1, a2, . . . , ak) is one more than the number of 1’s. Since
the number of −1’s and 1’s is equal in x, this means the number of 1’s in (ak+1, . . . , a2n) is one
more than the number of −1’s. All of this implies that

(a1, a2, . . . , ak,−ak+1,−ak+2, . . . ,−a2n)

has two more −1’s than 1’s. Two numbers that differ by 2 and have a sum of 2n must be n− 1
and n + 1, so the sequence above is in Y .

The above work defines a function, that we will call f , with domain X and codomain Y . Specif-
ically, if x = (a1, a2, . . . , a2n) in X and k the smallest integer such that a1 + a2 + · · · + ak < 0,
f(x) = (a1, a2, . . . , ak,−ak+1, . . . ,−a2n). That is, f(x) is the sequence obtained by negating
every integer from ak+1 to the end of the sequence. We will show that f is a bijection.

To see that f is injective, suppose w = (a1, a2, . . . , a2n) and x = (b1, b2, . . . , b2n) are in X
with f(w) = f(x). We suppose that k is the smallest such that a1 + a2 + · · · + ak < 0
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and m is the smallest such that b1 + b2 + · · · + bm < 0. We might as well assume that
k ≤ m. Our assumption says that the sequences (a1, a2, . . . , ak,−ak+1,−ak+1, . . . ,−a2n) and
(b1, b2, . . . , bk,−bm+1,−bm+1, . . . ,−b2n) are equal. Since k ≤ m, this means ai = bi when
1 ≤ i ≤ k and when m + 1 ≤ i ≤ 2n. Observe that a1 + a2 + · · · + ak = b1 + b2 + · · · + bk, and
since a1 + a2 + · · ·+ ak < 0 by assumption, we get that b1 + b2 + · · ·+ bk < 0. This means m ≤ k
as well and so k = m. Since ai = bi when 1 ≤ i ≤ k and k + 1 ≤ i ≤ 2n, we have that ai = bi
for all i. In other words, w = x, so f is injective.

Now suppose y = (c1, c2, c3, . . . , c2n) is a sequence is in Y . Because y ∈ Y , exactly n + 1 of the
integers in y are equal to −1 and n− 1 of them are equal to 1. Consider the list of sums

c1

c1 + c2

c1 + c2 + c3
...

c1 + c2 + c3 + · · ·+ c2n

The first “sum”, c1, is either −1 or 1. The final sum is (n − 1) − (n + 1) = −2. As we move
from one sum to the next in the list above, we add ci for some i, which means the sums either
increase or decrease by 1 as we move down the list. Therefore, there is at least one sum that
equals −1 (it could be the first). Suppose k is the smallest such that c1 + c2 + c3 + · · ·+ ck = −1.
Then the sequence

x = (c1, c2, . . . , ck,−ck+1,−ck+2, . . . , c2n)

is in X and f(x) = y. To see that x ∈ S, we have that c1 + c2 + · · · + ck = −1 and
c1 + c2 + · · · + c2n = −2, ad so it must be that ck+1 + ck+1 + · · · + c2n = −1. Therefore,
c1 + c2 + c3 + · · ·+ ck +(−ck+1)+(−ck+2)+ · · ·+(−c2n) = 0. This means x has the same number
of 1’s and −1’s, which means there are n of each. As well, the sequence fails P2 because the
first k integers have a negative sum. This shows that x ∈ X, and that f(x) = y is essentially by
the definition of x. Therefore, f is surjective, which completes the proof that it is a bijection.

The number of sequences in Y is

(
2n

n + 1

)
. This is because we can choose where to put the −1’s

in

(
2n

n + 1

)
ways, and then there is no choice of where to place the 1’s. By what we have shown,

we now know that there are

(
2n

n + 1

)
sequences in X as well.

We can now compute the number of jagged sequences. The number of sequences of 2n integers

that satisfy P1 is

(
2n

n

)
by reasoning similar to that in the previous paragraph. To get the

number of jagged sequences of length 2n, we need to subtract from

(
2n

n

)
the number of sequences

that satisfy P1 but fail P2, which is exactly the number of sequences in X. Therefore, the number
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of jagged sequences is (
2n

n

)
−

(
2n

n + 1

)
=

(2n)!

n!n!
− (2n)!

(n + 1)!(n− 1)!

=
(2n)!

n!(n− 1)!

(
1

n
− 1

n + 1

)
=

(2n)!

n!(n− 1)!
× 1

n(n + 1)

=
1

n + 1
× (2n)!

n!n!

=
1

n + 1

(
2n

n

)

Claim 5: The number of tame sequences of length n is
1

n + 1

(
2n

n

)
.

Proof of Claim 5. We will find a bijection from the set of jagged sequences of length 2n to the
number of tame sequences of length n.

Suppose x = (a1, a2, . . . , a2n) is jagged and that i1 < i2 < · · · < in are the indices where the 1’s
occur. That is, ai1 = ai2 = · · · = ain = 1 and all other integers in x are equal to −1. We will
now define a sequence y = (b1, b2, b3, . . . , bn) so that bk is the sum of the integers in x from a1
up to and including the kth integer equal to 1. In symbols, bk = a1 + a2 + · · ·+ aik .

Of the first ik integers in x, exactly k of them are equal to 1 and the other ik−k of them are equal
to −1. Therefore, their sum (which is bk by definition), is bk = k− (ik − k) = 2k− ik. Thus, for
a jagged sequence x = (a1, a2, . . . , a2n), we define f(x) to be the sequence (b1, b2, . . . , bn) where
bk = 2k − ik.

We will show that f is a bijection, but we first need to confirm that f(x) is always tame, which
means we need to show that b1 = 1, bk ≥ 1 for all k, and that bk+1 ≤ bk + 1 for all k < n. We
know that a1 = 1 by P2, so this means i1 = 1 and b1 = 2(1)− i1 = 2− 1 = 1. Suppose ik ≥ 2k.
In x, there are only k 1’s up to and including aik , which means that among the first ik integers
in x, there are at least as many −1’s as 1’s. This means the sum of the first ik integers cannot be
positive. Therefore, we must have that ik < 2k, and since both are integers, ik + 1 ≤ 2k, which
rearranges to 1 ≤ 2k− ik, which gives bk ≥ 1. To see that bk+1 ≤ bk + 1, note that ik + 1 ≤ ik+1,
so ik − ik+1 ≤ −1. Then

bk+1 − bk = 2(k + 1)− ik+1 − (2k − ik)

= 2k + 2− ik+1 − 2k + ik

= 2 + ik − ik+1

≤ 2− 1

= 1

and so bk+1 − bk ≤ 1 or bk+1 ≤ bk + 1. This completes the proof that f(x) is tame.

To see that f is injective, notice that bk = 2k − ik can be rearranged to get ik = 2k − bk. In
other words, if f(x) = y, then ik is uniquely determined from bk. This means that from y, the
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positions of the 1’s in x are uniquely determined, so the entirety of x is uniquely determined by
y. This means there is only one x with the property that f(x) = y, so f is injective.

To see that f is surjective, suppose y = (b1, b2, . . . , bn) is a tame sequence. For each k from 1
through n, define ik = 2k− bk, then define x = (a1, a2, . . . , a2n) so that aj = 1 if j = ik for some
k, and aj = −1 otherwise.

That f(x) = y follows by rearranging ik = 2k − bk to get bk = 2k − ik. However, to conclude
that f is surjective, we need to verify that x is indeed a jagged sequence.

By one of the conditions of tameness, b1 = 1, so so we have that i1 = 2(1) − 1 = 1. Using the
assumption that bk+1 ≤ bk + 1 which can be rearranged to bk − bk+1 ≥ −1, we get that

ik+1 − ik = 2(k + 1)− bk+1 − (2k − bk)

= 2k + 2− bk+1 − 2k + bk

= 2 + bk − bk+1

≥ 2 + (−1)

= 1

which means ik+1 − ik ≥ 1 and it follows that ik+1 > ik. Finally, since bn is positive,
in = 2n − bn < 2n. We have shown that 1 = i1 < i2 < · · · < in < 2n. This shows that
all of the ik are distinct, so x satisfies P1.

Rearranging ik = 2k − bk, we get bk = k − (ik − k), and by the reasoning from earlier, this
means the sum of the first ik integers in x (always ending with the kth 1) is equal to bk, which
is positive because y is tame. Now consider the sum a1 + a2 + · · ·+ am for some an arbitrary m
with 1 ≤ m ≤ 2n. If m = ik for some k, then the sum is positive by the reasoning just given.
Otherwise, there is some k for which ik < m < ik+1. Since every integer in x strictly between
aik and aik+1

equals −1 by construction, we must have that

a1 + a2 + · · ·+ am ≥ a1 + a2 + · · ·+ am + am+1 + · · ·+ aik+1−1

because the latter is obtained from the former by adding some (possibly zero) −1’s. We know
that aik+1

= 1 and that

a1 + a2 + · · ·+ am + am+1 + · · ·+ aik+1−1 + aik+1

is positive, so this means a1 + a2 + · · ·+ am ≥ 0.

We have shown that x satisfies P2 as well, so x is a jagged sequence with f(x) = y. Therefore,
f is surjective, which completes the proof that it is bijective. Therefore, the number of tame

sequences of length n is
1

n + 1

(
2n

n

)
.
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