

Problem of the Month Problem 5: February 2023

Hint

- (a) Remember the condition that no prime number can divide every integer in a splendid sequence.
- (b) Think of an integer that is a divisor of every integer.
- (c) Try the positive integer $c = a_i + a_{i+1}$.
- (d) Prove that if the divisibility conditions (S1 and S2 in the problem statement) are satisfied by $(a_1, a_2, a_3, \ldots, a_n)$, then a_1 and a_n must both divide every integer in the sequence.
- (e) Try to write down a few splendid sequences of length at least 5. With the hint for (c) in mind, what do you notice about the largest integer in a splendid sequence? Show that, for each n, there is a largest possible value that an integer in any splendid sequence of length ncan take. For instance, it can be shown that in a splendid sequence of length $n \geq 2$, every integer must be less than 2^{n-2} .
- (f) There is a famous sequence called the Catalan numbers where the n^{th} Catalan number equal to $\frac{1}{n+1}\binom{2n}{n}$. The Catalan numbers arise in many interesting ways in mathematics. One such way is that the n^{th} Catalan number is equal to the number of sequences (b_1, b_2, \dots, b_n) of length n with the following properties.
 - Each b_k is a positive integer.
 - $b_1 = 1$.
 - For each k satisfying $1 \le k \le n-1$, $b_{k+1} \le b_k+1$. That is, b_{k+1} is no more than one more than b_k (it is allowed to be less than or equal to b_k).

In the solution, such sequences will be called *tame sequences*. One way to answer this question is to show that the number of tame sequences of length n-1 is equal to the number of splendid sequences of length n and use the closed form for the number of tame sequences. To do this, we suggest trying to devise a way to use a tame sequence of length n-1 as "instructions" to construct a splendid sequence of length n. The idea from part (c) will probably be important.

Note: In the solution, we will provide a proof that the number of tame sequences of length nis the n^{th} Catalan number. You might want to try to prove this yourself, but we recommend taking it for granted when trying to solve part (f).