CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Problem of the Month Problem 4: January 2023

For each positive integer k, define a function $p_k(n) = 1^k + 2^k + 3^k + \cdots + n^k$ for each integer n. That is, $p_k(n)$ is the sum of the first n perfect k^{th} powers. It is well known that $p_1(n) = \frac{n(n+1)}{2}$.

- (a) Fix a positive integer n. Let S be the set of ordered triples (a, b, c) of integers between 1 and $n + 1$, inclusive, that also satisfy $a < c$ and $b < c$. Show that there are exactly $p_2(n)$ elements in the set S.
- (b) With S as in part (a), show that there are $\binom{n+1}{2}$ 2 $+ 2{n+1}$ 3 \setminus elements in S and use this to show that $p_2(n) = \frac{n(n+1)(2n+1)}{6}$
- (c) For each k, show that there are constants $a_2, a_3, \ldots, a_k, a_{k+1}$ such that

$$
p_k(n) = a_2 \binom{n+1}{2} + a_3 \binom{n+1}{3} + \dots + a_k \binom{n+1}{k} + a_{k+1} \binom{n+1}{k+1}
$$

for all n.

Note: Actually computing the constants gets more and more difficult as k gets larger. While you might want to compute them for some small k , in this problem we only intend that you argue that the constants always exist, not that you deduce exactly what they are.

(d) Use part (c) to show that
$$
p_3(n) = \frac{n^2(n+1)^2}{4}
$$
 and $p_4(n) = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$.

(e) It follows from the fact in part (c) that $p_k(n)$ is a polynomial of degree $k + 1$. With $k = 5$, this means there are constants $c_0, c_1, c_2, c_3, c_4, c_5$, and c_6 such that

$$
p_5(n) = c_0 + c_1 n + c_2 n^2 + c_3 n^3 + c_4 n^4 + c_5 n^5 + c_6 n^6
$$

Use the fact that $p_5(1) = 1$ and $p_5(n) - p_5(n-1) = n^5$ for all $n \ge 2$ to determine c_0 through c_6 , and hence, derive a formula for $p_5(n)$.

(f) Show that $n(n+1)$ is a factor of $p_k(n)$ for every positive integer k and that $2n+1$ is a factor of $p_k(n)$ for every even positive integer k.