CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Problem of the Month Problem 4: January 2023

Hint

- (a) What are the possible values of c?
- (b) How many distinct integers can occur in a triple in S?
- (c) Try to generalize the idea in part (c). The constants a_2 through a_{k+1} do not depend on n.
- (d) For positive integers u and v with u < v, the usual convention is that $\begin{pmatrix} u \\ v \end{pmatrix} = 0$. This convention makes sense for (at least) two reasons. First, there are zero ways to choose v objects from u distinct objects if u < v, so "u choose v" should be equal to 0. Second, the formula for $\begin{pmatrix} u \\ v \end{pmatrix}$ given by

$$\binom{u}{v} = \frac{u(u-1)(u-2)\cdots(u-v+1)}{v!}$$

will have a factor of 0 in the numerator if u < v.

- (e) Directly compute an expression for $p_5(n) p_5(n-1)$. It should be a polynomial with coefficients depending on a_1 through a_6 . By equating coefficients with the polynomial n^5 , solve for a_1 through a_6 . After these coefficients are known, a_0 can be computed from $p_5(1) = 1$.
- (f) A polynomial with infinitely many roots must be the constant zero polynomial. Using this fact, show that $p_k(n) p_k(n-1) = n^k$ for all real numbers, not just positive integers. This means you need to "extend" $p_k(n)$ to accept inputs that are not positive integers. Once this is done, determine the values of $p_k(0)$ and $p_k(-1)$. To show that 2n + 1 is a factor of $p_k(n)$ for even k, consider the values of $p_k(-n)$ when n is a positive integer.