
Problem of the Month
Solution to Problem 3: December 2023

For solutions to the original problem from the Canadian Intermediate Mathematics Contest,
please refer to the solutions on our website.

We will start by presenting two general facts. It is worth spending some time digesting them
before reading the rest of the solution.

Fact 1: For all positive integers m and n with m ≤ n, if the integer mn is not in Row n, then
there are positive integers a and b such that ab = mn and m < a ≤ b < n.

Proof. Assume that m and n are positive integers with m ≤ n such that mn is not in Row n.
Then mn must be in an earlier row since mn ≤ n2. Thus, mn is in Row b for some integer
b < n. The integers in Row b are multiples of b that are no larger than b2, which means that

mn = ab for some positive integer a with a ≤ b. Rearranging mn = ab, we get
a

m
=

n

b
. Since

b < n,
n

b
> 1, and so

a

m
> 1 which implies a > m. Therefore, there are positive integers a and

b such that mn = ab and m < a ≤ b < n.

Fact 2: For all positive integers m and n with m ≤ n, if there are positive integers a and b such
that ab = mn and m < a ≤ b < n, then the integer mn is not in Row n.

Proof. Assume that m and n are positive integers with m ≤ n and that there are positive
integers a and b with mn = ab and m < a ≤ b < n. We are assuming a ≤ b and that a and b
are positive, so ab ≤ b2, which implies mn ≤ b2 since we are assuming mn = ab. Therefore, mn
is a positive multiple of b that does not exceed b2, so mn cannot appear any later than Row b.
Since b < n, mn is not in Row n.

(a) Suppose k is a positive integer. If n is a positive integer with n ≤ k, then n2 − kn ≤ 0,
and so n2− kn is not in Row n. Therefore, we might as well assume that n > k as we look
for the largest n such that n2 − kn is not in Row n.

Assume now that n2 − kn = n(n− k) is not in Row n. By Fact 1 with m = n− k, there
must be integers a and b such that ab = n(n− k) and n− k < a ≤ b < n.

Because a and b are integers strictly between n − k and n, there must exist integers x
and y with 1 < x ≤ y < k such that a = n − y and b = n − x. We are assuming that
n2 − nk = ab, so we can substitute to get n2 − nk = (n− y)(n− x) = n2 − (x+ y)n+ xy.
This can be simplified and rearranged to get (x+ y − k)n = xy. The integers x and y are
both positive, so xy is positive, which implies that x+ y− k is positive so we can solve for

n to get n =
xy

x+ y − k
.

Now suppose x+y > k+1 and consider the expression
(x− 1)y

(x− 1) + y − k
− xy

x+ y − k
, which
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we can simplify as follows:

(x− 1)y

(x− 1) + y − k
− xy

x+ y − k
=

(x− 1)y(x+ y − k)− (xy)(x+ y − 1− k)

(x+ y − k)(x+ y − 1− k)

=
x2y + xy2 − xyk − xy − y2 + yk − x2y − xy2 + xy + xyk

(x+ y − k)(x+ y − 1− k)

=
−y2 + yk

(x+ y − k)(x+ y − 1− k)

=
y(k − y)

(x+ y − k)(x+ y − 1− k)

Carefully considering the components of the fraction above, we have that y is a positive
integer with y < k, so the quantity k − y must be negative, and since x + y > k + 1, the
quantities x+ y− k and x+ y− k− 1 are both positive. Therefore, the fraction at the end
of the calculation above is negative, so we get that

(x− 1)y

(x− 1) + y − k
− xy

x+ y − k
< 0

which implies that
(x− 1)y

(x− 1) + y − k
<

xy

x+ y − k
.

We have shown that if x+ y > k + 1, then the quantity
xy

x+ y − k
can be made larger by

decreasing x by 1. A similar argument shows that if x+ y > k+ 1, then the quantity gets

larger when y is decreased by 1. Since n =
xy

x+ y − k
and we seek the largest possible n,

we conclude that n can always be made larger by decreasing x+ y by 1, provided x+ y is
larger than k + 1. Therefore, the maximum value of n must occur when x+ y = k + 1.

Note: It is possible (and essentially assured) that
xy

x+ y − k
is not always an integer.

However, since it is maximized when x+y = k+1, which makes the denominator equal to

1, the maximum possible value of
xy

x+ y − k
given the constraints on x and y happens to be

an integer. Therefore, the maximum possible integer value of
xy

x+ y − k
is the maximum

possible value, which occurs when x+ y = k + 1.

Substituting x + y = k + 1 into n =
xy

x+ y − k
, we get n = xy. Therefore, the task is to

maximize xy subject to the conditions 1 < x ≤ y < k and x+ y = k + 1.

Substituting y = k + 1 − x into xy, we get xy = x(k + 1 − x) = (k + 1)x − x2. Since k
is fixed, the expression (k + 1)x− x2 is a quadratic in x with a negative coefficient of x2.

Therefore, it has a maximum value and it occurs when x =
k + 1

2
.

We are looking for the maximum among integer values of x, so if
k + 1

2
is an integer, the

maximum occurs exactly when x =
k + 1

2
. Since x+y = k+1, this implies that y =

k + 1

2
as well.
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Otherwise, the maximum will occur at the integer nearest
k + 1

2
. There is a tie between

k + 1

2
− 1

2
=

k

2
and

k + 1

2
+

1

2
=

k + 2

2
. Notice that the sum of these two possible values

of x is
k

2
+

k + 2

2
= k + 1, so one of the values must be x and the other must be y. Since

x ≤ y, we have that x =
k

2
and y =

k + 2

2
.

Now to summarize what we have so far: if we assume that n2−kn is not in Row n, then n

is no larger than

(
k + 1

2

)2

when k is odd and n is no larger than
k

2

(
k + 2

2

)
=

k(k + 2)

4

when k is even. Note that when k = 10, we get
10(12)

4
= 30, which agrees with the answer

to part (c) of the original problem.

To finish the argument, we need to verify that

[(
k + 1

2

)2
]2

− k

(
k + 1

2

)2

is not in

Row

(
k + 1

2

)2

when k is odd and that

(
k(k + 2)

4

)2

−k

(
k(k + 2)

4

)
is not in Row

k(k + 2)

4
when k is even. We will only include the verification for when k is odd here. The verification
when k is even is similar.

Expanding and simplifying, we have[(
k + 1

2

)2
]2

− k

(
k + 1

2

)2

=

(
k + 1

2

)2
[(

k + 1

2

)2

− k

]

=

(
k + 1

2

)2 [
k2 + 2k + 1− 4k

4

]
=

(
k + 1

2

)2 [
k2 − 2k + 1

4

]
=

(
k2 − 1

4

)2

Now set n =

(
k + 1

2

)2

, m = n − k, and a = b =
k2 − 1

4
. It follows from the calculation

above that mn = ab. If we can show that m < a ≤ b < n, then we can apply Fact 2 to get
that mn = n2−kn is not in Row n. Note that a = b by definition, so a ≤ b is automatically

true. Expanding gives n =
k2 + 2k + 1

4
and m =

k2 − 2k + 1

4
, and it is easily checked that

m =
k2 − 2k + 1

4
<

k2 − 1

4
<

k2 + 2k + 1

4
= n

for all k > 1. This means we can apply Fact 2 as long as k > 1, which completes the

verification that the maximum value of n is exactly

(
k + 1

2

)2

when k is odd and k > 1.

Finally, if k = 1, then n2 − kn = n2 − n. By the original contest problem, n2 − n is in
Row n for n ≥ 3. Also, n2 − n is in Row n when n = 2, but when n = 1, n2 − n = 0 is
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not in Row n. Therefore, when k = 1, the maximum value of n for which n2− kn is not in

Row n is n = 1. Notice that

(
k + 1

2

)2

evaluates to 1 when k = 1, so the formula works

even in this case.

(b) Suppose m is a positive integer with m ≤ p such that mp is not in Row p. By Fact 1,
there exist positive integers a and b such that mp = ab and m < a ≤ b < p. The equation
mp = ab implies that ab is a multiple of p, and since p is a prime number, a or b must be
a multiple of p. (This is by a fact often known as Euclid’s Lemma.) We also have that
a and b are positive and both less than p, so it is impossible for either of them to be a
multiple of p because p is prime.

We conclude that there are no positive integers m with m ≤ p such that mp is not in
Row p. In other words, mp is in Row p for every positive integer m with m ≤ p.

Since 0 is not in any row and 0 = 0×p is a multiple of p, 0 is the largest integer m with the
property that m ≤ p and mp is not in Row p. Thus, f(p) = 0 when p is a prime number.

(c) We will show that f(pq) = (p− 1)(q − 1). To do this, we need to establish two things:

• (p− 1)(q − 1)pq is not in Row pq.

• For every integer k with (p− 1)(q − 1) < k ≤ pq, the integer kpq is in Row pq.

We will assume that p ≤ q. If not, then q ≤ p and the proof is essentially identical.

To see that the first point is true, set n = pq, m = (p − 1)(q − 1), a = q(p − 1), and
b = p(q − 1) and apply Fact 2. Note that p− 1 < p so (p− 1)(q − 1) < p(q − 1) or m < a.
We also have p ≤ q, which can be rearranged to get −q ≤ −p, and so pq − q ≤ pq − p,
which can be factored to get q(p − 1) ≤ p(q − 1) or a ≤ b. Finally, q − 1 < q, so
b = p(q − 1) < pq = n. Putting these inequalities together, we have m < a ≤ b < n. Since
mn = (p − 1)(q − 1)pq = ab, the conditions of Fact 2 are satisfied and we can conclude
that (p− 1)(q − 1)pq is not in Row pq.

Now suppose k is an integer such that (p − 1)(q − 1) < k ≤ pq. We wish to show that
kpq must be in Row pq. To do this, we will assume that it is not in Row pq and deduce a
contradiction.

To that end, assume that kpq is not in Row pq. By Fact 1, there must be integers a and
b with k < a ≤ b < pq such that kpq = ab. If a is a multiple of pq, then we would have
pq ≤ a, but a < pq by assumption, so this is impossible. Therefore, a is not a multiple of
pq. Similarly, b is not a multiple of pq.

Since ab is a multiple of pq and p and q are prime, either a is a multiple of p and b is a
multiple of q, or a is a multiple of q and b is a multiple of p. We will assume that a is
a multiple of p and b is a multiple of q. The other situation is similar. This implies the
existence of integers x and y such that px = a and qy = b. Observe that since a < pq, we
must have x < q, and similarly y < p. Since x, y, p, and q are integers, we conclude that
x ≤ q − 1 and y ≤ p− 1.

Since we are assuming that kpq = ab, we have

k =
ab

pq
=

pxqy

pq
= xy ≤ (p− 1)(q − 1)
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However, we are also assuming that (p− 1)(q − 1) < k, so we can deduce that

k ≤ (p− 1)(q − 1) < k

which is impossible because it implies k < k. Therefore, our assumption that kpq is not in
Row pq must be false, and we conclude that kpq is in Row pq.

Therefore, f(pq) = (p− 1)(q − 1) as claimed earlier.

(d) The value of f(pd) depends on whether d is even or odd. If d = 2r for some integer r, then
f(pd) = (pr − 1)2. If d = 2r + 1 for some integer r, then f(pd) = (pr − 1) (pr+1 − 1).

Here we include a proof in the case where d is even. The proof when d is odd is a slight
modification of the proof given for when d is even.

Assume d = 2r for some positive integer r. As with part (c), we need to show that

• p2r (pr − 1)2 is not in Row p2r,

• and kp2r is in Row p2r for every k with (pr − 1)2 < k ≤ p2r.

If we set m = (pr − 1)2, n = p2r, and a = b = pr (pr − 1), then we will have m < a ≤ b < n
and mn = ab, so p2r (pr − 1)2 is not in Row p2r by Fact 2. This establishes the first bullet
point above.

For the second, suppose kp2r is not in Row p2r for some k with (pr − 1)2 < k ≤ p2r. By
Fact 1, there must be integers a and b with (pr − 1)2 < a ≤ b < p2r and kp2r = ab.

The product ab must have at least 2r factors of the prime number p, meaning the two
integers a and b have at least a total of 2r factors of p between them. Therefore, there
are non-negative integers u and v such that u + v = 2r, a is a multiple of pu, and b is a
multiple of pv. By definition, there are positive integers x and y such that pux = a and
pvy = b.

We are also assuming that a ≤ b < p2r = pu+v = pupv, so a = pux < pupv and
b = pvy < pupv, which implies x < pv and y < pu. Since x, p, u, and v are non-negative
integers, we have x ≤ pv − 1 and y ≤ pu − 1. Multiplying these inequalities, we obtain
xy ≤ (pu − 1)(pv − 1). We are also assuming that kp2r = ab, so we can substitute to get

kp2r = xypupv = xypu+v = xyp2r

Thus, kp2r = xyp2r, so k = xy, which implies k ≤ (pu − 1)(pv − 1).

We can now conclude that (pr − 1)2 < k ≤ (pu − 1)(pv − 1). To finish the argument, we
will show that (pu − 1)(pv − 1) ≤ (pr − 1)2, which would imply that (pr − 1)2 < (pr − 1)2,
which is clearly false.

To show that (pu − 1)(pv − 1) ≤ (pr − 1)2, we will show that if u and v are non-negative
integers with u+ v = 2r, then the quantity (pu − 1)(pv − 1) is maximized when u = v = r.

Suppose u and v are non-negative integers with u > v and u + v = 2r. Consider the
quantity (pu−1 − 1)(pv+1 − 1) − (pu − 1)(pv − 1). We can manipulate this difference as
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follows.

(pu−1 − 1)(pv+1 − 1)− (pu − 1)(pv − 1) = pu+v − pu−1 − pv+1 + 1− pu+v + pu + pv − 1

= pu + pv − pu−1 − pv+1

= pv(pu−v + 1− pu−v−1 − p)

= pv(pu−v − p)

(
1− 1

p

)
We are assuming that u > v. Since u+ v is even, it must also be true that u− v is even.
Therefore, u−v ≥ 2. As well, p is a prime number so p ≥ 2, which implies pu−v−p > 0 and

1− 1
p
> 0. The quantity pv is positive, and so we conclude that pv(pu−v − p)

(
1− 1

p

)
> 0,

which implies that (pu−1− 1)(pv+1− 1)− (pu− 1)(pv − 1) > 0. Rearranging this inequality,
we get (pu−1 − 1)(pv+1 − 1) > (pu − 1)(pv − 1).

What we have shown is that if u and v are non-negative integers with u + v = 2r and
u > v, we can increase the value of (pu − 1)(pv − 1) by decreasing u by 1 and increasing v
by 1. It follows that (pu − 1)(pv − 1) is maximized when u and v are as close together as

possible, which happens when u = v =
2r

2
= r.

(e) In general, f(n) can be computed as follows: find the unique positive integers x and y with
x ≤ y, xy = n, and y − x as small as possible. Then f(n) = (x− 1)(y − 1).

For example, if n = p is a prime number, then the only positive factor pair is p = 1× p, so
x = 1 and y = p. Indeed, from part (b), f(p) = 0 = (1− 1)(p− 1) = (x− 1)(y− 1). If n is
a perfect square, then n = z2 for some positive integer z. Here, we must have x = y = z
because this gives y − x = 0, which is the smallest that the difference between the factors
in a factor pair could possibly be. Indeed, f(z2) = (z− 1)2 agrees with the case from part
(d) where n = p2r. As a final example, consider n = 72. Its positive factor pairs are (1, 72),
(2, 36), (3, 24), (4, 18), (6, 12), and (8, 9). The pair with the smallest difference between
the factors is (8, 9), so we have x = 8 and y = 9, giving (x−1)(y−1) = (8−1)(9−1) = 56.
Indeed, 56× 72 = 63× 64, so 56× 72 is not in Row 72. As well, you can check that 72m
is in Row 72 for each m from 57 through 72, which shows that f(72) = 56.

We will now justify that this “formula” always works.

Fix an integer n and suppose x, y, u, and v are positive integers with x ≤ y, u ≤ v, and
xy = uv = n.

If y − x ≤ v − u, then since x ≤ y, we have 0 ≤ y − x ≤ v − u, so we can conclude that
(y − x)2 ≤ (v − u)2. Expanding these expressions and adding 4n to both sides, we have

y2 − 2xy + x2 ≤ v2 − 2uv + u2

y2 − 2xy + x2 + 4n ≤ v2 − 2uv + u2 + 4n

y2 − 2xy + x2 + 4xy ≤ v2 − 2uv + u2 + 4uv

y2 + 2xy + x2 ≤ v2 + 2uv + u2

(y + x)2 ≤ (v + u)2

and since y + x and v + u are both positive, we must have y + x ≤ v + u. Essentially the
same argument in reverse shows that if y + x ≤ v + u, then y − x ≤ v − u.
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We have shown that y − x ≤ v − u exactly when y + x ≤ v + u. This implies that if we
consider all positive factor pairs of n, the one that has the smallest difference is also the
one that has the smallest sum. Therefore, we can restate our “formula” as follows: Given
a positive integer n, let x and y be positive integers with xy = n and x + y as small as
possible. Then f(n) = (x − 1)(y − 1). We will assume that the integers x and y satisfy
x ≤ y. If not, then they can be relabelled.

The overall structure of the argument will resemble the arguments for parts (c) and (d).
That is, we will show that xy(x− 1)(y− 1) is not in Row n, but if (x− 1)(y− 1) < m ≤ n,
then mxy is in Row n. The solution presented will use, without proof, a few well-known
facts about divisibility and greatest common divisors.

To see that xy(x− 1)(y − 1) is not in Row n, take m = (x− 1)(y − 1), a = y(x− 1), and
b = x(y − 1) and apply Fact 2. That these choices of m, a, b, and c satisfy the conditions
of Fact 2 can be verified in essentially the same way as they were in the solutions to parts
(c) and (d).

Now suppose m is an integer with (x − 1)(y − 1) < m ≤ n = xy such that mn is not in
Row n. By Fact 1, there are integers a and b such that m < a ≤ b < n and ab = mn. Let

d = gcd(n, b) and then define e =
n

d
and f =

b

d
. Observe that the integers e and f must

satisfy gcd(e, f) = 1 since if they had a common divisor larger than 1, then the greatest
common divisor of n and b would need to be larger than d.

Dividing both sides of ab = mn by d, we get af = me, which shows that af is a multiple
of e. We have already noted that e and f have no common divisors larger than 1, so we
are forced to conclude that a is a multiple of e. That is, there must be some integer g such
that a = eg.

To summarize, so far we have that d = gcd(b, n), de = n, df = b, and eg = a. Consider the
integers e and f and suppose e ≤ f . Multiplying both sides by d gives de ≤ df or n ≤ b,
but this contradicts our assumption that b < n, so we cannot have e ≤ f . Therefore,
f < e, and since both e and f are integers, we get f ≤ e − 1. Similarly, if d ≤ g, then
de ≤ eg or n ≤ a, which contradicts our assumption, so we conclude that g < d and so
g ≤ d− 1.

We are assuming that (x− 1)(y − 1) < m, so we have the following

n(x− 1)(y − 1) < mn = ab = egdf ≤ de(e− 1)(d− 1)

which implies n(x − 1)(y − 1) < de(d − 1)(e − 1). Using that n = de, we cancel to get
(x−1)(y−1) < (d−1)(e−1) which can be expanded to get xy−x−y+1 < de−d−e+1,
and since de = xy = n, this simplifies to d+e < x+y. However, xy = n is the factorization
of n into a product of positive integers that minimizes the sum of the factors. Since de = n,
the inequality d+ e < x+ y is a contradiction of this minimality.

We conclude that our assumption that mn is not in Row n must be false, which means
mn is in Row n. This completes the proof.
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