
Problem of the Month
Solution to Problem 2: November 2022

(a) Expanding and simplifying, we have
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and so we see that 1011φ = 10000φ

(b) There are several ways to approach this problem and we will demonstrate two of them.
First, from the example given in the problem statement, we have that
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Another approach is to use what might be called a “greedy algorithm”. We first note that
4 + 3

√
5 ≈ 10.708204 and then consider powers of φ and find the first one that does not

exceed it. As it turns out, φ4 ≈ 6.854102 and φ5 ≈ 11.090170. It can be checked that
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The approximate value of α − φ4 is 3.854102. Now we check that φ2 ≈ 2.618034 and
φ3 ≈ 4.236068, so the largest power of φ that does not exceed α − φ4 is φ2, and it can be
checked that

α− φ4 − φ2 = −1 +
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5 ≈ 1.236068

Since φ0 = 1 and φ1 = φ ≈ 1.618034, the largest power of φ that does not exceed α−φ4−φ2

is φ0 = 1, and so we now consider the quantity
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Considering φ taken to negative integer exponents, we find that φ−3 ≈ 0.236068, so we
suspect that −2 +
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Therefore, α− φ4 − φ2 − 1 =
1
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which can be rearranged to get α = φ4 + φ2 + φ0 + φ−3,

which means 4 + 3
√

5 = 10101.001. Notice that these two base φ expansions are different
and both correct. A way to see that the expansions are equal is explained throughout the
rest of the solution.

(c) Expanding φ2 and simplifying, we have
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Multiplying this equation by φn−1 gives φn−1 + φn = φn+1. It will be useful in part (d) to
note that this means that 011φ = 100φ and more generally, if 011 ever occurs in a base φ
expansion, it can be replaced by 100, or vice versa, without changing the actual value of
the number being expressed.

(d) As suggested in the problem, we will use the facts in the bullet points. Specifically, we will
use Fact 1 and Fact 2 below:
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Fact 1: If a real number n has a base φ expansion, then it has a base φ expansion that
does not have two consecutive digits equal to 1.

Fact 2: If a real number n has a base φ expansion, then it has a base φ expansion that has
its units digit d0 equal to 0.

Proof of Fact 1. Let n = dkdk−1 · · · d2d1d0.d−1d−2 · · · d−r be a base φ expansion of n. We
will call the digit dm bad if dm = 1 and at least one of dm+1 and dm−1 is equal to 1. We
want to show that n has a base φ expansion that has no bad digits.

Observe that if n has an expansion with every digit equal to 0, then n must itself be the
real number 0. This is because every power of φ is positive.

Suppose the given expansion of n has at least one bad digit. Then we let m be the largest
integer such that dm is bad. By definition, dm = 1 and either dm+1 = 1 or dm−1 = 1.
However, it is not possible for dm+1 = 1 since this would imply that dm+1 is bad, but m is
the largest integer such that dm is bad.

Thus, we must have dm+1 = 0, dm = 1, and dm−1 = 1, and so the given expansion is

n = dkdk−1 · · · dm+2011dm−2 · · · d1d0.d−1d−2 · · · d−r

By the remark at the end of part (c), we can replace the 011 by 100 to get that

n = dkdk−1 · · · dm+2100dm−2dm−2 · · · d1d0.d−1d−2 · · · d−r

Notice that we have found a base φ expansion of n with fewer non-zero digits, under the
assumption that the expansion had at least one bad digit. In other words, if a base φ
expansion of n has at least one bad digit, then there is a base φ expansion of n that has
fewer non-zero digits. Thus, as long as there is a bad digit, we can decrease the number
of non-zero digits.

By the above remark, unless n = 0, the number of nonzero digits cannot decrease indefi-
nitely since there were finitely many digits to begin with. Thus, we must eventually lose
the ability to decrease the number of nonzero digits, and by the previous paragraph, this
means we must eventually reach a base φ expansion that has no bad digits.

Below is an example of the procedure explained in the proof of Fact 1. It is used to find
a base φ expansion of n = 1010101110011.1101φ that has no bad digits. There is a step
where a leading 11 is replaced by 100. The digits are aligned in the equations to indicate
where this happened. In every line except the last, the the digits that are changed in the
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subsequent line are highlighted in red.

n = 1010101110011.1101φ

= 1010110010011.1101φ

= 1011000010011.1101φ

= 1100000010011.1101φ

= 10000000010011.1101φ

= 10000000010100.1101φ

= 10000000010101.0001φ

Proof of Fact 2. This can be shown by an argument rather similar to the proof of Fact 1.
This time, we will introduce bad digits in order to remove a potential 1 from the units
digit. Suppose n has a base φ expansion. By Fact 1, we can assume that the expansion
n = dkdk−1 · · · d2d1d0d−1 · · · d−rφ is a expansion without any bad digits. If d0 = 0, then
there is nothing to do, so we assume that d0 = 1. We will now artificially add two “trailing”
0’s as digits. That is, we also have that

n = dkdk−1 · · · d2d1d0d−1 · · · d−rd−r−1d−r−2

where d−r−1 = d−r−2 = 0. Let m be the largest integer with 0 > m and dm = dm−1 = 0.
Since we have added two trailing zeros, we know this must happen somewhere, so it is
possible to choose m this way.

By the choice of m, we must have that dm+1 = 1, and since the expansion has no bad
digits, dm+2 = 0. By the choice of m, it then follows that dm+3 = 1, then since there are
no bad digits, we get dm+4 = 0, and so on. Since d0 = 1, this alternating pattern must
eventually reach d0 = 1. In other words, the expansion takes the form

n = dkdk−1 · · · d3d2d11.010101 · · · 010100dm−2dm−3 · · · d−rd−r−1d−r−2

By part (c), we can change dm and dm−1 to 1’s and compensate by changing dm+1 to 0.
The new expansion is

n = dkdk−1 · · · d3d2d11.010101 · · · 010011dm−2dm−3 · · · d−rd−r−1d−r−2

Repeating this process, we now change dm+1 and dm+2 to 1’s and change dm+3 to a 0. This
process terminates in the expansion

n = dkdk−1 · · · d3d2d10.111111 · · · 111dm−2dm−3 · · · d−r

which indeed has d0 = 0.

The procedure in the proof of Fact 2 is used below to find a base φ expansion of the
number represented as n = 100101001.01010101001010010001φ that has d0 = 0. As was
done earlier, in each line but the last, the three digits highlighted in red are the ones that
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change in the subsequent line.

n = 100101001.01010101001010010001φ

n = 100101001.01010100111010010001φ

n = 100101001.01010011111010010001φ

n = 100101001.01001111111010010001φ

n = 100101001.00111111111010010001φ

n = 100101000.11111111111010010001φ

Now we will apply the facts to derive base φ expansions for the first ten positive integers.

To start, we have that 1 = 1φ since 1 = φ0. This means the integer 1 has a base φ
expansion. Following the procedure outlined in the proof of Fact 2, 1 = 0.11φ. It is easy
to add 1 to a base φ expansion that has d0 = 0 because we can simply change d0 = 1.
Thus, we have that 2 = 1.11φ, and using the procedure from the proof of Fact 1 again, we
get 2 = 10.01φ.

Continuing in this way, if we have a base φ expansion of the integer n, then we can use
the technique in the proof of Fact 1 to find a base φ expansion that does not have any
bad digits. Then, if necessary, we can use the technique in the proof of Fact 2 to find a
base φ expansion of n that has d0 = 0. From this, we can find a base φ expansion of n+ 1
by taking the base φ expansion of n and switching d0 from 0 to 1, which has the effect of
adding 1. This process can be repeated to find a base φ expansion of n + 2, then n + 3,
and so on. Starting with n = 1, this is demonstrated up to n = 10 below.

1 = 1φ 6 = 111.0111φ

= 1.00φ = 1001.1001φ

= 0.11φ = 1010.0001φ

2 = 1.11φ 7 = 1011.0001φ

= 10.01φ = 1100.0001φ

3 = 11.01φ 8 = 1101.0001φ

= 100.01φ = 10000.1101φ

4 = 101.01φ 9 = 10001.1101φ

= 101.0100φ = 10010.0101φ

= 101.0011φ

= 100.1111φ

5 = 101.1111φ 10 = 10011.0101φ

= 110.0111φ = 10100.0101φ
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