CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Problem of the Month Problem 1: October 2022

Hint

- (a) There are several ways to compute the area of the Seraj hexagon. One is to subtract the areas of three smaller triangles from that of the full triangle.
- (b) From the centre of the incircle, draw a radius to each point of tangency the circle has with the triangle.
- (c) If $\triangle ABC$ is similar to $\triangle DEF$, then $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$. It is a useful general fact that if we denote this common ratio by k, then any two corresponding altitudes of these two triangles also have a ratio of k. Can you compute the ratio of the areas of $\triangle ABC$ and $\triangle DEF$ in terms of k?
 - One possible expression is

$$rs\left[1-\left(1-\frac{a}{s}\right)^2-\left(1-\frac{b}{s}\right)^2-\left(1-\frac{c}{s}\right)^2\right]$$

(d) Try to prove that $3(x^2 + y^2 + z^2) \ge (x + y + z)^2$ is true for all real numbers x, y, and z and determine a condition on x, y, and z that implies $3(x^2 + y^2 + z^2) = (x + y + z)^2$.