
2015 Canadian Computing Olympiad

Day 1, Problem 1

Hungry Fox

Time Limit: 2 seconds

Problem Description

It’s dinner time for your pet fox! His meal consists of N crackers, with the ith cracker having a temperature

of Ti degrees Celsius. He also has a large dish of water, which has a temperature of W degrees Celsius.

After taking an initial sip of water, your fox begins his meal. Every time he eats a cracker, its tastiness is

equal to the absolute difference between its temperature, and the temperature of the last thing he ate or drank

(be it the previous cracker he ate, or a sip of water, whichever he consumed most recently). He can drink

some water whenever he wants, and can eat the crackers in any order.

Depending on the order in which your fox eats and drinks, the total tastiness of the crackers consumed may

vary. What are the minimum and maximum values it can have?

Input Specification

The first line contains two integers, N (1 ≤ N ≤ 100 000) and W (0 ≤ W ≤ 109), representing the number

of crackers and the water’s temperature. On the next N lines, there is one integer, Ti (0 ≤ Ti ≤ 109 for

1 ≤ i ≤ N ), representing the temperature of the ith cracker.

For at least 30% of the marks for this problem, W = 0.

Output Specification

The output is one line containing two integers: the minimum and maximum total tastiness your fox can

experience during his meal, respectively.

Sample Input

3 20

18

25

18

Output for Sample Input

7 16

Explanation of Output for Sample Input

To minimize the total tastiness, the fox might drink water, eat the first cracker, eat the third cracker, drink

more water, and finally eat the second cracker. He will then experience temperatures of 20, 18, 18, 20, and

25 degrees Celsius, and the crackers will have tastiness values of 2 + 0 + 5 = 7.

To maximize the total tastiness, the fox might drink water, and then eat the crackers in order. He will then

experience temperatures of 20, 18, 25, and 18 degrees Celsius, and the crackers will have tastiness values of

2 + 7 + 7 = 16.
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2015 Canadian Computing Olympiad

Day 1, Problem 2

Artskjid

Time Limit: 2 seconds

Problem Description

There are many well-known algorithms for finding the shortest route from one location to another. People

have GPS devices in their cars and in their phones to show them the fastest way to get where they want to

go. While on vacation, however, Troy likes to travel slowly. He would like to take the longest route to his

destination so that he can visit many new and interesting places along the way.

As such, a valid route consists of a sequence of distinct cities c1, c2, ..., ck, such that there is a road from ci
to ci+1 for each 1 ≤ i < k.

He does not want to visit any city more than once. Can you help him find the longest route?

Input Specification

The first line of input contains two integers n, m, the total number of cities and the number of roads con-

necting the cities (2 ≤ n ≤ 18; 1 ≤ m ≤ n2 − n). There is at most one road from any given city to any

other given city. Cities are numbered from 0 to n− 1, with 0 being Troy’s starting city, and n− 1 being his

destination.

The next m lines of input each contain three integers s, d, l. Each triple indicates that there is a one way

road from city s to city d of length l km (0 ≤ s ≤ n− 1; 0 ≤ d ≤ n− 1; s 6= d; 1 ≤ l ≤ 10000). Each road

is one-way: it can only be taken from s to d, not vice versa. There is always at least one route from city 0 to

city n− 1.

For at least 30% of the marks for this problem, n ≤ 8.

Output Specification

Output a single integer, the length of the longest route that starts in city 0, ends in city n − 1, and does not

visit any city more than once. The length is the sum of the lengths of the roads taken along the route.

Sample Input

3 3

0 2 5

0 1 4

1 2 3

Output for Sample Input

7

Explanation of Output for Sample Input

The shortest route would be to take the road directly from 0 to 2, of length 5 km. The route going from 0 to

1 to 2 is 4 + 3 = 7 km, which is longer.
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2015 Canadian Computing Olympiad

Day 1, Problem 3

Solar Flight

Time Limit: 15 seconds

Problem Description

A new era of aviation is upon us - the first solar-powered jumbo jets are about to be made available for

public travel! However, this cutting-edge technology raises some safety concerns, as the rays of sunlight

which power these planes can be blocked by other objects in the sky. As such, some statistics must first be

calculated concerning the planned initial flights.

We consider a set of N flight paths, all travelling East from one city to another. A plane can be considered

as a single point. The sky through which they pass can be modelled as a Cartesian plane, with x-coordinates

representing distance East from an arbitrary fixed point, and y-coordinates representing altitude. We are

interested only in the section of the sky with x-coordinates in the inclusive range [0, X] (1 ≤ X ≤ 109), in

which all flight paths are straight lines. The ith plane flies from (0, Ai) to (X , Bi) (1 ≤ Ai, Bi ≤ 109). All

A values are distinct, as are all B values. The planes travel at unknown, possibly non-constant speeds along

their flight paths, so at any point in time, a plane may be anywhere along its path. However, it is known

that the planes will never crash with one another, so if two flight paths cross one another, both planes won’t

reach the intersection point at precisely the same time.

Planes also have an inteference factor: each plane i has an interference factor Ci (1 ≤ Ci ≤ 109), which is

a measure of how much plane i would negatively impact the solar absorbing capability of any plane below

them.

The solar panels on each plane are rather strange, in that they can only collect energy from directly above

the plane. This means the sunlight that a given plane can absorb can be obstructed by other planes which

occupy the same x-coordinate as it, and have a larger y-coordinate than it. In particular, their effectiveness

is reduced based on the sum of the interference factor of all such planes.

Given this information, as well as a fixed distance constant K (1 ≤ K ≤ X), you must answer Q queries

regarding the possible impact on planes’ solar panels at various times. The ith query asks for the largest

possible amount by which the plane Pi’s solar panels could be obstructed at a single moment in time, at any

point while the plane’s x-coordinate is in the inclusive range [Si, Si +K] (0 ≤ Si ≤ X −K).

Input Specification

The first line contains four space-separated integers: X (1 ≤ X ≤ 109), the maximum x-coordinate to

consider; K (1 ≤ K ≤ X), the fixed distance constant; N (1 ≤ N ≤ 2000), the number of flight paths; Q

(1 ≤ Q ≤ 800 000), the number of queries.

Each of the next N lines contain three integers, Ai, Bi, and Ci, for i = 1..N (1 ≤ Ai, Bi, Ci ≤ 109),

representing, for plane i, the starting y-coordinate, the ending y-coordinate, and the interference factor

(respectively).

Each of the next Q lines contain two integers, Pi and Si, for i = 1..Q representing the query concerning
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plane Pi while its x-coordinate is in the range [Si, Si +K].

For 40% of the marks for this problem, Q ≤ 1000.

Output Specification

The output consists of Q lines, each with the integer answer to the ith query, for i = 1..Q.

Sample Input

12 4 3 3

1 4 5

2 2 3

6 3 6

2 1

1 8

3 0

Output for Sample Input

11

6

0

Explanation of Output for Sample Input

Below is a diagram of the planes’ flight paths:

0 5 10
0

5

x

y

1
3
2

The first query is for plane 2 over x-coordinates in the inclusive range [1, 5]. While this plane is at an x-

coordinate smaller than or equal to 4, it might be covered by plane 3, but definitely not by plane 1. However,

when it’s at an x-coordinate larger than 4, it might be covered by both other planes. Therefore, the answer

to this query is the sum of the other planes’ interference factors, 5 + 6 = 11.

For the second query, plane 1 could be covered by plane 3 while it has x-coordinate less than 10, and will

not be covered by anything while it has x-coordinate greater than or equal to 10. Thus, it is only possibly

interfered with by plane 3 with interference factor 6.

Neither plane 1 nor plane 2 can possibly be directly above plane 3 until it reaches x-coordinate 10, so the

answer to the final query is 0.
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2015 Canadian Computing Olympiad

Day 2, Problem 1

Cars on Ice

Time Limit: 5 seconds

Problem Description

Guarding a bank during Christmas night can get very boring. That’s why Barry decided to go

skating around the parking lot for a bit. However the parking lot isn’t empty as the other security

guards have their cars parked there. So Barry decides to push their cars out of the parking lot. He

notices that their cars are parked facing either North, South, East or West. Since the parking lot is

frozen, pushing a car will make it slide until it has left the parking lot or hit another car. Cars can

only be pushed in the direction which they are facing. Not wanting to crash the cars, Barry enlists

your help to find out what order he has to push the cars so as to clear the parking lot.

Input Specification

The first line contains two integers N and M (1 ≤ N,M ≤ 2000) representing the number of

rows and columns of the parking lot. The next N lines each contain M characters representing the

parking lot itself, where ‘.’ represents an empty spot, while ‘N’, ‘S’, ‘E’ and ‘W’ each represent a

car (facing North, South, East or West, respectively).

For at least 70% of the marks for this problem, N ≤ 100 and M ≤ 100.

Output Specification

Output the order in which the cars have to be pushed so as to clear the parking lot without crashes.

Output each car in the form (r, c), where r and c are the car’s coordinates on the parking lot (where

(0, 0) is the top leftmost spot and (N − 1,M − 1) is the bottom rightmost spot).

You can assume there will always be at least one valid solution.

If there are multiple possible solutions, output any valid solution.

Sample Input 1

5 5

.....

.E.S.

.....

.....

.N.E.

Output for Sample Input 1

(4,3)

(1,3)
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(1,1)

(4,1)

Explanation for Output for Sample Input 1

The only car that isn’t initially blocked by another car is the one at (4, 3). After that’s pushed out

to the right side of the parking lot, then the car above it (at (1, 3)) can be pushed, and then the one

at (1, 1), and finally the car at (4, 1), clearing the parking lot.

Sample Input 2

4 3

...

.N.

.S.

...

Output for Sample Input 2

(1,1)

(2,1)

Explanation for Output for Sample Input 2

Either car could be pushed first to clear the parking lot, so this output is acceptable (as would the

output with the lines outputted in reverse order).
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2015 Canadian Computing Olympiad

Day 2, Problem 2

Timpanist

Time Limit: 1 second

Problem Description

Computer scientists don’t often help percussionists, but today, that will change. Since we cannot

help all percussionists at the same time, we focus on timpanists first. By way of terminology, the

timpani is the plural of timpano and the player of the timpani is a timpanist.

A timpano is a large drum which can be tuned to a certain pitch, and a timpanist uses an ordered

set of D timpani. On this occasion, they’re playing a piece which has N notes. Note i occurs Ti

seconds into the piece, and has pitch Pi. Pi is one of the following twelve notes:

{ F, F#, G, G#, A, A#, B, C, C#, D, D#, E }

At a given time, a timpano can only be used to play the pitch it is currently tuned to, and thus the

timpanist can play a note i if and only if one of the timpani is tuned to pitch Pi at time Ti.

Every note in this piece is in the range of a single octave, from F up to E, which means that the

above list of possible notes is in ascending order of pitch. In order to make your computation

slightly easier, we will use integers from 1 to 12 to indicate these 12 tones:

1 2 3 4 5 6 7 8 9 10 11 12

F F# G G# A A# B C C# D D# E

(i.e., F will be represented by 1, F# by 2, . . ., E by 12).

These are the only pitches to which timpani can be tuned.

Before the piece starts, the timpanist can freely tune each timpano to any pitch they’d like. How-

ever, during the piece, they may need to quickly retune them in between notes in order to be able

to play the required pitches at the correct times. The drums are numbered from 1 to D. At every

point in time, the drum i + 1 must be kept tuned to a pitch higher than drum i. Retuning a single

drum must be done in an uninterrupted interval of time, in which no notes are being played and

no other drums are being retuned. Because this is not an easy process, the timpanist would like

to give themselves as much time as possible. In particular, they’d like to maximize the amount of

time they have for the fastest retuning they must perform within the piece.

Input Specification

The first line contains two integers, N and D, the number of notes to be played and the number
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of drums available to be played (1 ≤ N ≤ 100; 1 ≤ D ≤ 4). The next N lines each contain two

integers Ti and Pi representing the time and pitch of the ith note played (0 ≤ T1 < T2 < ... <

TN−1 < TN ≤ 109; 1 ≤ Pi ≤ 12 for 1 ≤ i ≤ N ).

For 60% of the marks for this problem, N ≤ 50 and D ≤ 3.

Output Specification

The output is one line containing one real number (rounded off to 2 decimal places), which is the

maximum amount of time (in seconds) that the timpanist can have for their fastest retuning, or

0.00 if no retunings are necessary

Sample Input 1

7 1

100 1

120 3

130 5

140 6

150 8

165 10

170 12

Output for Sample Input 1

5.00

Explanation of Output for Sample Input 1

With just 1 drum, the timpanist must retune it after every note in order to play the following one.

With 2 drums, the answer would instead be 10.00 (achieved by leaving the higher drum tuned to

pitch 12).

Sample Input 2

12 4

0 1

2 1

3 3

6 1

9 6

12 5

21 1

23 1

24 3

27 1

30 8
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33 6

Output for Sample Input 2

4.50

Explanation of Output for Sample Input 2

The first 6 notes include only the 4 pitches 1, 3, 5, and 6. Similarly, the last 6 include only 1, 3, 6,

8.

The single optimal strategy involves pre-tuning the 4 drums to 1, 3, 5, and 6. After the sixth note,

the timpanist can take 4.5 seconds to retune the highest drum to an 8, and then another 4.5 seconds

to retune the second-highest drum to a 6, finishing just in time to play the seventh note.

Sample Input 3

2 4

40287 8

20338194 8

Output for Sample Input 3

0.00

Explanation of Output for Sample Input 3

This is a more typical timpani part, involving just one note, and thus no retuning.
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2015 Canadian Computing Olympiad

Day 2, Problem 3

Eggscavation

Time Limit: 10 seconds

Problem Description

It’s time for a vacation! You are sick and tired of C shells, so you decide to become a seashell

collector.

For your vacation, you have decided to visit the beautiful island nation of Cartesia. It is well-

known for having a lovely square beach that is composed of an N × N grid of square cells. You

have brought your trusty shovel, which is able to dig up a K × K square subgrid of the beach.

Your shovel, being trusty, can only dig up a K ×K subgrid that is entirely within the beach.

There are M undiscovered species of shells hidden under certain grid cells. Specifically for each

i, there are Si shells from the ith species in Si grid locations, with 1 ≤ Si ≤ 4. For each distinct

species that you dig up and bring back home, you can sell it to a scientist back home for one dollar.

Multiple shells of the same species don’t add extra value.

Complicating matters is a glorious dodo bird running around the beach. At a given moment, it may

decide to bury an egg in a grid cell (including grid cells that have eggs or shells already). The bad

news is that if the K × K subgrid dug up by your shovel includes a dodo egg, the scientists will

become annoyed that you are harming endangered species, and nobody will pay you anything.

After all is said and done, you decide to sit back, go back to programming, and simulate the digging

instead. You will be computing the probability that your scoop, when chosen uniformly from all

valid possible scoops, will make at least a given minimum profit (to pay off your student loans) at

different points in time. Who wants to get all sweaty from shoveling on a beach anyway?

Input Specification

The first line of input contains two integers N and K, (1 ≤ N ≤ 2500; 1 ≤ K ≤ N ), the size of

the beach and the size of the shovel, respectively.

The second line of input contains the integer M (0 ≤ M ≤ 105), the number of species of shells.

The next M lines each represent species i and consist of the integer Si (1 ≤ Si ≤ 4) followed by

2 ∗ Si more integers, which represent the grid positions (between (1, 1) and (N,N)) where the Si

shells of that species are buried.

The next line contains T (1 ≤ T ≤ 10 000). Each of the next T lines represent one specific point

in time (from oldest to newest) and each line has one of the following two forms:

• 1Ai Bi (1 ≤ Ai, Bi ≤ N ), meaning that the dodo just buried an egg in the grid cell (Ai, Bi);
or

6



• 2 Vi (1 ≤ Vi ≤ 109), meaning we would like to calculate the probability that a random dig at

this point in time has profit in dollars ≥ Vi. Note that no shells or eggs are actually removed

or added when this probability is calculated.

For at least 15% of the marks for this question, N ≤ 40 and all update operations occur before all

query operations.

For an additional 25% of the marks for this question, all update operations will occur before all

query operations.

Output Specification

For each query operation, output on one line the probability that a random scoop would contain at

least the desired number of different types of shells.

Your answer must be within 10−4 of the judge’s answer.

Sample Input

4 2

3

3 1 1 2 3 4 2

3 1 4 2 3 3 2

4 2 1 2 4 4 1 4 4

6

2 2

2 3

1 2 3

2 2

2 3

2 4

Output for Sample Input

0.88889

0.33333

0.44444

0.11111

0.00000

Explanation of Output for Sample Input

Initially, we have the following arrangement of shells (with the first shells in the input being la-

belled as 1, and so on):
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1 2

3 1, 2 3

2

3 1 3

and our shovel will scoop up a 2× 2 square of cells. Thus, there are 9 possible scoops.

With no eggs present, 8 of the 9 scoops contain at least two species of shells and 3 of the 9 scoops

contain three species of shells.

An egg is then dropped into the cell that contains 1, 2.

Then, 4 of the 9 scoops contain at least two species of shells and no eggs and only 1 scoop (the

bottom-leftmost scoop) would contain all three species of shells and no eggs. The final output

indicates there are no scoops which contain 4 different species of shells.
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