Many of you probably play instruments! But did you know that the foundations of music are built with mathematics?
Many of you probably play instruments! But did you know that the foundations of music are built with mathematics?

One of the first things you learn when you start with instruments is something called a *scale*. The scales that we play have evolved over time and vary by region.
Many of you probably play instruments! But did you know that the foundations of music are built with mathematics?

One of the first things you learn when you start with instruments is something called a *scale*. The scales that we play have evolved over time and vary by region.

The fundamental mathematics behind these scales? Fractions!
The sound of a note is based on its frequency.
The sound of a note is based on its frequency.

In terms of a string, like the ones plucked on a guitar or struck by a hammer in a piano, this means the number of vibrations up and down per second.
The sound of a note is based on its frequency.

In terms of a string, like the ones plucked on a guitar or struck by a hammer in a piano, this means the number of vibrations up and down per second.

This is measured in a unit called the Hertz (Hz). One Hertz means one vibration per second.
An Introduction to Scales

A scale starts with a base frequency and ends on a note that is twice the frequency (the scale runs through an octave).
An Introduction to Scales

A scale starts with a base frequency and ends on a note that is twice the frequency (the scale runs through an octave).

We will focus on three types of Western scales, as they evolved through time.
An Introduction to Scales

A scale starts with a base frequency and ends on a note that is twice the frequency (the scale runs through an octave).

We will focus on three types of Western scales, as they evolved through time.

Our story begins with the ancient Greeks.
An Introduction to Scales

A scale starts with a base frequency and ends on a note that is twice the frequency (the scale runs through an octave).

We will focus on three types of Western scales, as they evolved through time.

Our story begins with the ancient Greeks.

They noticed that strings in the ratio $\frac{3}{2}$ sounded quite good together.
An Introduction to Scales

A scale starts with a base frequency and ends on a note that is twice the frequency (the scale runs through an octave).

We will focus on three types of Western scales, as they evolved through time.

Our story begins with the ancient Greeks.

They noticed that strings in the ratio $\frac{3}{2}$ sounded quite good together.

Thus, the ‘Pythagorean Scale’ was created.
To create this scale, start with a base frequency. For simplicity, give this a value of 1.
To create this scale, start with a base frequency. For simplicity, give this a value of 1.

As we know, an octave ends at double the frequency, which in this case is 2.
To create this scale, start with a base frequency. For simplicity, give this a value of 1.

As we know, an octave ends at double the frequency, which in this case is 2.

As the ratio \(\frac{3}{2} \) is nice, we multiply the base frequency by \(\frac{3}{2} \) and divide the top frequency by \(\frac{3}{2} \).
Pythagorean Scale

To create this scale, start with a base frequency. For simplicity, give this a value of 1.

As we know, an octave ends at double the frequency, which in this case is 2.

As the ratio $\frac{3}{2}$ is nice, we multiply the base frequency by $\frac{3}{2}$ and divide the top frequency by $\frac{3}{2}$.

This leaves us with four missing notes in our eight note scale.
Pythagorean Scale

To create this scale, start with a base frequency. For simplicity, give this a value of 1.

As we know, an octave ends at double the frequency, which in this case is 2.

As the ratio $\frac{3}{2}$ is nice, we multiply the base frequency by $\frac{3}{2}$ and divide the top frequency by $\frac{3}{2}$.

This leaves us with four missing notes in our eight note scale.

To fill in the last four, we iterate by multiplying by $\frac{3}{2}$, and every time we obtain a value greater than 2, we halve it. We do this because we do not want any notes in our scale higher than an octave above the base. Try it out!
We get the values below:

\[
\begin{array}{cccccccc}
1 & \frac{3}{2} & 9 & \frac{27}{16} & \frac{81}{64} & \frac{243}{128} & \frac{4}{3} & 2 \\
\end{array}
\]

This scale is commonly labeled as: C D E F G A B C

You will notice that there are two different step sizes; the tone which is \(\frac{9}{8} \) and the semitone which is \(\frac{256}{243} \). The pattern of this scale is \(\text{ttsttstt} \).
Pythagorean Scale

We get the values below:

\[
\begin{array}{cccccccc}
1 & \frac{3}{2} & \frac{9}{8} & \frac{27}{16} & \frac{81}{64} & \frac{243}{128} & \frac{4}{3} & 2 \\
\end{array}
\]

Arranging these values from lowest to highest gives us the following scale:

\[
\begin{array}{cccccccc}
1 & \frac{9}{8} & \frac{81}{64} & \frac{4}{3} & \frac{3}{2} & \frac{27}{16} & \frac{243}{128} & 2 \\
\end{array}
\]
Pythagorean Scale

We get the values below:

\[
\begin{array}{cccccccc}
1 & \frac{3}{2} & 9 & \frac{27}{8} & \frac{81}{16} & \frac{243}{64} & \frac{4}{3} & 2 \\
\end{array}
\]

Arranging these values from lowest to highest gives us the following scale:

\[
\begin{array}{cccccccc}
1 & \frac{9}{8} & \frac{81}{64} & \frac{4}{3} & \frac{3}{2} & \frac{27}{16} & \frac{243}{128} & 2 \\
\end{array}
\]

This scale is commonly labeled as:

C D E F G A B C
Pythagorean Scale

We get the values below:

\[
\begin{array}{cccccccc}
1 & \frac{3}{2} & 9 & \frac{27}{8} & \frac{81}{16} & \frac{243}{64} & \frac{4}{3} & 2
\end{array}
\]

Arranging these values from lowest to highest gives us the following scale:

\[
\begin{array}{cccccccc}
1 & \frac{9}{8} & \frac{81}{64} & \frac{4}{3} & \frac{3}{2} & \frac{27}{16} & \frac{243}{128} & 2
\end{array}
\]

This scale is commonly labeled as:

C D E F G A B C

You will notice that there are two different step sizes; the \textit{tone} which is \(\frac{9}{8}\) and the \textit{semitone} which is \(\frac{256}{243}\). The pattern of this scale is \textit{ttsttts}.

The Problem

Some of the *intervals* between notes didn’t sound great, thanks to some of the large or awkward ratios of this scale.

![Musical notes diagram]
The Problem

Some of the *intervals* between notes didn’t sound great, thanks to some of the large or awkward ratios of this scale.

Why are intervals important to us?
The Problem

Some of the *intervals* between notes didn’t sound great, thanks to some of the large or awkward ratios of this scale.

Why are intervals important to us?

Well, a large part of western music is the *chord* or *triad*. The triad is essentially made up of three alternating notes in the scale.
The Problem

Some of the *intervals* between notes didn’t sound great, thanks to some of the large or awkward ratios of this scale.

Why are intervals important to us?

Well, a large part of western music is the *chord* or *triad*. The triad is essentially made up of three alternating notes in the scale.

To make these sound good, we want to replace the awkward fractions $\frac{81}{64}$, $\frac{27}{16}$, and $\frac{243}{128}$. Thus, the ‘Classical Just Scale’ was created.
We want the three notes in the chord to be in a clean ratio, which is usually 4 : 5 : 6.
We want the three notes in the chord to be in a clean ratio, which is usually $4 : 5 : 6$.

Let’s examine the chord made up of the first, third, and fifth notes of the scale; replacing the third note, $\frac{81}{64}$, with an unknown:

$$1 : x : \frac{3}{2}$$
We want the three notes in the chord to be in a clean ratio, which is usually $4 : 5 : 6$.

Let’s examine the chord made up of the first, third, and fifth notes of the scale; replacing the third note, $\frac{81}{64}$, with an unknown:

$$1 : x : \frac{3}{2}$$

We can make the first and third numbers look like 4 and 6 by multiplying by 4 to get

$$4 : 4x : \frac{12}{2}$$
Classical Just Scale

We want the three notes in the chord to be in a clean ratio, which is usually $4 : 5 : 6$.

Let’s examine the chord made up of the first, third, and fifth notes of the scale; replacing the third note, $\frac{81}{64}$, with an unknown:

$$1 : x : \frac{3}{2}$$

We can make the first and third numbers look like 4 and 6 by multiplying by 4 to get

$$4 : 4x : \frac{12}{2}$$

Equating the middle term to 5 we find

$$4x = 5$$

$$x = \frac{5}{4}$$
Classical Just Scale

We want the three notes in the chord to be in a clean ratio, which is usually $4 : 5 : 6$.

Let's examine the chord made up of the first, third, and fifth notes of the scale; replacing the third note, $\frac{81}{64}$, with an unknown:

$$1 : x : \frac{3}{2}$$

We can make the first and third numbers look like 4 and 6 by multiplying by 4 to get

$$4 : 4x : \frac{12}{2}$$

Equating the middle term to 5 we find

$$4x = 5$$

$$x = \frac{5}{4}$$

So $\frac{5}{4}$ is our new third note.
Now we examine a chord made up of the fourth, sixth, and eighth notes of the scale, replacing the sixth note, $\frac{27}{16}$, with an unknown:

$$\frac{4}{3} : y : 2$$
Now we examine a chord made up of the fourth, sixth, and eighth notes of the scale, replacing the sixth note, $\frac{27}{16}$ with an unknown:

$$\frac{4}{3} : y : 2$$

We can make the first and third numbers look like 4 and 6 by multiplying by 3 to get

$$\frac{12}{3} : 3y : 6$$
Now we examine a chord made up of the fourth, sixth, and eighth notes of the scale, replacing the sixth note, $\frac{27}{16}$ with an unknown:

$$\frac{4}{3} : y : 2$$

We can make the first and third numbers look like 4 and 6 by multiplying by 3 to get

$$\frac{12}{3} : 3y : 6$$

Equating the middle term to 5 we find

$$3y = 5$$

$$y = \frac{5}{3}$$
Now we examine a chord made up of the fourth, sixth, and eighth notes of the scale, replacing the sixth note, $\frac{27}{16}$ with an unknown:

\[
\frac{4}{3} : y : 2
\]

We can make the first and third numbers look like 4 and 6 by multiplying by 3 to get

\[
\frac{12}{3} : 3y : 6
\]

Equating the middle term to 5 we find

\[
3y = 5
\]

\[
y = \frac{5}{3}
\]

So $\frac{5}{3}$ is our new sixth note.
The only note left to replace is the seventh note, \(\frac{243}{128} \). So we will look at the chord made up of the fifth, seventh, and ninth notes of the scale.
The only note left to replace is the seventh note, $\frac{243}{128}$. So we will look at the chord made up of the fifth, seventh, and ninth notes of the scale.

Now, since the eighth note of the scale is 2, which is an octave above, and therefore twice the first note (1), the ninth note is $\frac{18}{8}$, which is twice the second note ($\frac{9}{8}$).
Classical Just Scale

Replace the seventh note with an unknown:

\[
\frac{3}{2} : z : \frac{18}{8}
\]

We can make the first and third numbers look like 4 and 6 by multiplying by \(\frac{8}{3}\) to get

\[
\frac{24}{3} : z : \frac{144}{24}
\]

Equating the middle term to 5 we find

\[
z = 15
\]

So \(\frac{15}{8}\) is our new seventh note.
Classical Just Scale

Replace the seventh note with an unknown:

\[
\frac{3}{2} : z : \frac{18}{8}
\]

We can make the first and third numbers look like 4 and 6 by multiplying by \(\frac{8}{3}\) to get

\[
\frac{24}{6} : \frac{8z}{3} : \frac{144}{24}
\]

Equating the middle term to 5 we find

\[
z = 15
\]

So \(\frac{15}{8}\) is our new seventh note.
Replace the seventh note with an unknown:

\[
\frac{3}{2} : z : \frac{18}{8}
\]

We can make the first and third numbers look like 4 and 6 by multiplying by \(\frac{8}{3}\) to get

\[
\frac{24}{6} \cdot \frac{8z}{3} \cdot \frac{144}{24}
\]

Equating the middle term to 5 we find

\[
\frac{8z}{3} = 5
\]

\[
z = \frac{15}{8}
\]
Replace the seventh note with an unknown:

\[
\frac{3}{2} : z : \frac{18}{8}
\]

We can make the first and third numbers look like 4 and 6 by multiplying by \(\frac{8}{3}\) to get

\[
\frac{24}{6} : \frac{8z}{3} : \frac{144}{24}
\]

Equating the middle term to 5 we find

\[
\frac{8z}{3} = 5
\]

\[
z = \frac{15}{8}
\]

So \(\frac{15}{8}\) is our new seventh note.
Thus we end up with this scale:

\[
\begin{align*}
1 & \quad \frac{9}{8} & \quad \frac{5}{4} & \quad \frac{4}{3} & \quad \frac{3}{2} & \quad \frac{5}{3} & \quad \frac{15}{8} & \quad 2
\end{align*}
\]
Thus we end up with this scale:

\[
\begin{array}{cccccccc}
1 & \frac{9}{8} & \frac{5}{4} & \frac{4}{3} & \frac{3}{2} & \frac{5}{3} & \frac{15}{8} & 2 \\
\end{array}
\]

These notes lead to triads that are all in the same beautiful ratio! These chords are very pleasing to the ear.
Yet, the scale that we are used to today, the one that you would likely have tuned on your piano at home, is NOT the Classical Just.
Yet, the scale that we are used to today, the one that you would likely have tuned on your piano at home, is NOT the Classical Just.

The two scales presented so far do not transpose well. That is, they sound strange when they are switched to a different key.
The Problem

Yet, the scale that we are used to today, the one that you would likely have tuned on your piano at home, is NOT the Classical Just.

The two scales presented so far do not transpose well. That is, they sound strange when they are switched to a different key.

So, yet another scale was created - the ‘Equal Temperament Scale’.
Equal Temperament Scale

The idea behind Equal Temperament is to have a consistent step size.
The idea behind Equal Tempered temperament is to have a consistent step size. Thinking back to the Pythagorean scale, consider a semitone to be 1 step and a tone to be 2 steps. Mathematically we set this up as $t = s^2$.
The idea behind Equal Temperament is to have a consistent step size.

Thinking back to the Pythagorean scale, consider a semitone to be 1 step and a tone to be 2 steps. Mathematically we set this up as $t = s^2$.

Thus, from the pattern $ttsttts$ we have 12 steps.
Equal Temperament Scale

The first note in our scale is always 1.
Equal Temperament Scale

The first note in our scale is always 1.

Then, the second note would be $1 \times t = 1 \times s^2 = s^2$.
Equal Temperament Scale

The first note in our scale is always 1.

Then, the second note would be $1 \times t = 1 \times s^2 = s^2$.

The third note would be $s^2 \times t = s^2 \times s^2 = s^4$.
Equal Temperament Scale

The first note in our scale is always 1.

Then, the second note would be \(1 \times t = 1 \times s^2 = s^2 \).

The third note would be \(s^2 \times t = s^2 \times s^2 = s^4 \).

The fourth note would be \(s^4 \times s = s^5 \).
Equal Temperament Scale

The first note in our scale is always 1.

Then, the second note would be $1 \times t = 1 \times s^2 = s^2$.

The third note would be $s^2 \times t = s^2 \times s^2 = s^4$.

The fourth note would be $s^4 \times s = s^5$.

Continuing this pattern, the eight and last note, which we know is 2, would be s^{12}.
Equal Temperament Scale

Then we can say:

\[s^{12} = 2 \]

\[s = 2^{\frac{1}{12}} \]

Then our scale is as follows:

\[\begin{array}{ccccccc}
1 & 2 & 1 & 6 & 2 & 1 & 3 \\
7 & 2 & 11 & 12 & 2 & 4 & 10 \\
\end{array} \]

With this scale we get perfect transposition, however you will notice we lose our nice intervals (though they are actually quite close to nice, if you try it out!). Some musicians still like to use the Classical Just scale as they consider it to have a much richer sound, whereas Equal Temperament is a truly mathematical scale!
Equal Temperament Scale

Then we can say:

\[s^{12} = 2 \]

\[s = 2^{\frac{1}{12}} \]

Then our scale is as follows:

1 2^{\frac{1}{6}} 2^{\frac{1}{3}} 2^{\frac{5}{12}} 2^{\frac{7}{12}} 2^{\frac{3}{4}} 2^{\frac{11}{12}} 2

With this scale we get perfect transposition, however you will notice we lose our nice intervals (though they are actually quite close to nice, if you try it out!).

Some musicians still like to use the Classical Just scale as they consider it to have a much richer sound, whereas Equal Temperament is a truly mathematical scale!
Then we can say:

\[s^{12} = 2 \]
\[s = 2^{\frac{1}{12}} \]

Then our scale is as follows:

\[1 \quad 2^{\frac{1}{6}} \quad 2^{\frac{1}{3}} \quad 2^{\frac{5}{12}} \quad 2^{\frac{7}{12}} \quad 2^{\frac{3}{4}} \quad 2^{\frac{11}{12}} \quad 2 \]

With this scale we get perfect transposition, however you will notice we lose our nice intervals (though they are actually quite close to nice, if you try it out!).
Then we can say:

\[s^{12} = 2 \]

\[s = 2^{\frac{1}{12}} \]

Then our scale is as follows:

\[
\begin{align*}
1 & \quad 2^{\frac{1}{6}} & \quad 2^{\frac{1}{3}} & \quad 2^{\frac{5}{12}} & \quad 2^{\frac{7}{12}} & \quad 2^{\frac{3}{4}} & \quad 2^{\frac{11}{12}} & \quad 2 \\
\end{align*}
\]

With this scale we get perfect transposition, however you will notice we lose our nice intervals (though they are actually quite close to nice, if you try it out!).

Some musicians still like to use the Classical Just scale as they consider it to have a much richer sound, whereas Equal Temperament is a truly mathematical scale!
Today’s pianos are tuned around a note called A4, which has a value of 440 Hz.
Today’s pianos are tuned around a note called A4, which has a value of 440 Hz.

Without going too in-depth into music theory, we are going to create what is call the A-major scale.
Today’s pianos are tuned around a note called A4, which has a value of 440 Hz.

Without going too in-depth into music theory, we are going to create what is call the A-major scale.

A-major contains F, C, and G sharps (denoted by the # symbol).
Today’s pianos are tuned around a note called A4, which has a value of 440 Hz.

Without going too in-depth into music theory, we are going to create what is call the A-major scale.

A-major contains F, C, and G sharps (denoted by the # symbol).

We can create the three scales we’ve talked about previously around this note.
Pythagorean A-major Scale

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C#</th>
<th>D</th>
<th>E</th>
<th>F#</th>
<th>G#</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hz</td>
<td>440</td>
<td>495</td>
<td>556.875</td>
<td>586.667</td>
<td>660</td>
<td>742.5</td>
<td>835.3125</td>
<td>880</td>
</tr>
</tbody>
</table>

Math in the Real World: Music (9+)
Classical Just A-major Scale

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C#</td>
<td>D</td>
<td>E</td>
<td>F#</td>
<td>G#</td>
<td>A</td>
</tr>
<tr>
<td>440 Hz</td>
<td>495 Hz</td>
<td>550 Hz</td>
<td>586.667 Hz</td>
<td>660 Hz</td>
<td>733.333 Hz</td>
<td>825 Hz</td>
<td>880 Hz</td>
</tr>
</tbody>
</table>
Equal Temperament A-major Scale

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C#</td>
<td>D</td>
<td>E</td>
<td>F#</td>
<td>G#</td>
<td>A</td>
</tr>
<tr>
<td>440 Hz</td>
<td>493.883 Hz</td>
<td>554.365 Hz</td>
<td>587.330 Hz</td>
<td>659.255 Hz</td>
<td>739.989 Hz</td>
<td>830.609 Hz</td>
<td>880 Hz</td>
</tr>
</tbody>
</table>

If you were to search “Piano Key Frequencies” on your favourite search engine, you would discover the values listed in the Equal Temperament table!
Equal Temperament A-major Scale

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C#</th>
<th>D</th>
<th>E</th>
<th>F#</th>
<th>G#</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hz</td>
<td>440</td>
<td>493.883</td>
<td>554.365</td>
<td>587.330</td>
<td>659.255</td>
<td>739.989</td>
<td>830.609</td>
<td>880</td>
</tr>
</tbody>
</table>

If you were to search “Piano Key Frequencies” on your favourite search engine, you would discover the values listed in the Equal Temperament table!
Visit cemc.uwaterloo.ca for great mathematics resources!