Problem of the Week
 Problem E and Solution Outside the Path of Totality

Problem

Yannick used a camera with a solar filter to capture a solar eclipse. From their location, the Moon blocked some, but not all of the Sun, so they saw a partial solar eclipse. When Yannick enlarged and printed the photo, they noticed that the distance represented by segment $X Y$ in the photo shown was 70 cm , and that the diameters of the Sun and the Moon were both
74 cm . Determine the percentage of the Sun that is blocked by the Moon in Yannick's photo, rounded to 1 decimal place.

Solution

Let the centres of the Sun and Moon in the photo be S and M, respectively. We draw line segments $S X, S Y, M X$, and $M Y$. We draw line segment $S M$ which intersects $X Y$ at T. The shaded region represents the portion of the Sun that is blocked by the Moon.

In our diagram we have drawn S and M inside the shaded region, but we need to prove they actually lie inside this region before we can proceed with the area calculation. Since each of the circles has radius $74 \div 2=37$, then $S X=S Y=M X=M Y=37$. It follows that $\triangle S X Y$ is isosceles. Similarly, $\triangle S X M$ and $\triangle S Y M$ are congruent. Thus, $\angle X S M=\angle Y S M$. Since $\triangle S X Y$ is isosceles and $S M$ bisects $\angle X S Y$, then $S M$ is perpendicular to $X Y$ at T, and $X T=T Y=70 \div 2=35$. By the Pythagorean Theorem in $\triangle S T X$,

$$
S T=\sqrt{S X^{2}-X T^{2}}=\sqrt{37^{2}-35^{2}}=12
$$

Thus, $S M=2 \times S T=2 \times 12=24$. Since $S M$ is smaller than the radius of the circles, it follows that S and M must lie inside the shaded region.

Now we can proceed with the area calculation. By symmetry, the area of the shaded region on each side of $X Y$ will be the same. The area of the shaded region on the right side of $X Y$ equals the area of acute sector $X S Y$ of the left circle minus the area of $\triangle S X Y$. These areas are striped in the following diagrams.

First we find the area of $\triangle S X Y$, which is $\frac{1}{2}(X Y)(S T)=\frac{1}{2}(70)(12)=420$.
Next we find the area of sector $X S Y$. Using the cosine law in $\triangle S X Y$,

$$
\begin{aligned}
X Y^{2} & =S X^{2}+S Y^{2}-2(S X)(S Y) \cos (\angle X S Y) \\
70^{2} & =37^{2}+37^{2}-2(37)(37) \cos (\angle X S Y) \\
2162 & =-2738 \cos (\angle X S Y) \\
\angle X S Y & =\cos ^{-1}\left(-\frac{2162}{2738}\right) \approx 142.15^{\circ}
\end{aligned}
$$

Thus, the area of sector $X S Y$ is equal to $\frac{142.15^{\circ}}{360^{\circ}} \pi(37)^{2}$.
Then the area of the shaded region is equal to $2\left(\frac{142.15^{\circ}}{360^{\circ}} \pi(37)^{2}-420\right)$.
Finally, we calculate this area as a percentage of the area of the entire circle to obtain the following:

$$
\frac{2\left(\frac{142.15^{\circ}}{360^{\circ}} \pi(37)^{2}-420\right)}{\pi(37)^{2}} \approx 59.4 \%
$$

It follows that the percentage of the Sun that is blocked by the Moon in Yannick's photo is equal to approximately 59.4%.

