

Problem of the Week Problem E and Solution Points on an Ellipse

Problem

The graph of $(x+1)^2 + (y-2)^2 = 100$ is a circle with centre (-1,2) and radius 10.

The graph of $10x^2 - 6xy + 4x + y^2 = 621$ is shown below. The shape of this curve is known as an ellipse.

List all the ordered pairs (x, y) of non-negative integers x and y that satisfy the equation $10x^2 - 6xy + 4x + y^2 = 621$.

NOTE: When solving this problem, it might be useful to use the following idea.

By completing the square,

$$x^2 + y^2 + 2x - 4y = 95$$

can be rewritten as

$$(x+1)^2 + (y-2)^2 = 100$$

One solution to this equation is (x, y) = (5, 10).

Solution

Starting with the given equation, we obtain the following equivalent equations:

$$10x^{2} - 6xy + 4x + y^{2} = 621$$

$$9x^{2} - 6xy + y^{2} + x^{2} + 4x = 621$$

$$9x^{2} - 6xy + y^{2} + x^{2} + 4x + 4 = 621 + 4$$

$$(3x - y)^{2} + (x + 2)^{2} = 625$$

Notice that $625 = 25^2$.

Since x and y are both integers, then the left side of the given equation is the sum of two perfect squares. Since any perfect square is non-negative, then each of these perfect squares is at most $625 = 25^2$.

The pairs of perfect squares that sum to 625 are 625 and 0, 576 and 49, and 400 and 225.

Therefore, $(3x - y)^2$ and $(x + 2)^2$ are equal to 25^2 and 0^2 in some order, or 24^2 and 7^2 in some order, or 20^2 and 15^2 in some order.

Furthermore, 3x - y and x + 2 are equal to ± 25 and ± 0 in some order, or ± 24 and ± 7 in some order, or ± 20 and ± 15 in some order.

Since $x \ge 0$, then $x + 2 \ge 2$. So we need to consider when x + 2 is equal to 25, 24, 7, 20, or 15.

- If x + 2 = 25, then x = 23. Also, 3x y = 0. Thus, y = 69. Since $x \ge 0$ and $y \ge 0$, (23, 69) is a valid ordered pair.
- If x + 2 = 24, then x = 22. Also, 3x y = 7 or 3x y = -7. When 3x - y = 7, we find y = 59. Since $x \ge 0$ and $y \ge 0$, (22, 59) is a valid ordered pair. When 3x - y = -7, we find y = 73. Since $x \ge 0$ and $y \ge 0$, (22, 73) is a valid ordered pair.
- If x + 2 = 7, then x = 5. Also, 3x y = 24 or 3x y = -24. When 3x - y = 24, we find y = -9. Since y < 0, this does not lead to a valid ordered pair. When 3x - y = -24, we find y = 39. Since $x \ge 0$ and $y \ge 0$, (5, 39) is a valid ordered pair.
- If x + 2 = 20, then x = 18. Also, 3x y = 15 or 3x y = -15. When 3x - y = 15, we find y = 39. Since $x \ge 0$ and $y \ge 0$, (18, 39) is a valid ordered pair. When 3x - y = -15, we find y = 69. Since $x \ge 0$ and $y \ge 0$, (18, 69) is a valid ordered pair.
- If x + 2 = 15, then x = 13. Also, 3x y = 20 or 3x y = -20. When 3x - y = 20, we find y = 19. Since $x \ge 0$ and $y \ge 0$, (13, 19) is a valid ordered pair. When 3x - y = -20, we find y = 59. Since $x \ge 0$ and $y \ge 0$, (13, 59) is a valid ordered pair. pair.

Therefore, the ordered pairs of non-negative integers that satisfy the equation are (23, 69), (22, 59), (22, 73), (5, 39), (18, 39), (18, 69), (13, 19), and (13, 59).