Problem of the Week Problem E and Solution
 Points on an Ellipse

Problem

The graph of $(x+1)^{2}+(y-2)^{2}=100$ is a circle with centre $(-1,2)$ and radius 10 .
The graph of $10 x^{2}-6 x y+4 x+y^{2}=621$ is shown below. The shape of this curve is known as an ellipse.

List all the ordered pairs (x, y) of non-negative integers x and y that satisfy the equation $10 x^{2}-6 x y+4 x+y^{2}=621$.

Note: When solving this problem, it might be useful to use the following idea.
By completing the square,

$$
x^{2}+y^{2}+2 x-4 y=95
$$

can be rewritten as

$$
(x+1)^{2}+(y-2)^{2}=100
$$

One solution to this equation is $(x, y)=(5,10)$.

Solution

Starting with the given equation, we obtain the following equivalent equations:

$$
\begin{aligned}
10 x^{2}-6 x y+4 x+y^{2} & =621 \\
9 x^{2}-6 x y+y^{2}+x^{2}+4 x & =621 \\
9 x^{2}-6 x y+y^{2}+x^{2}+4 x+4 & =621+4 \\
(3 x-y)^{2}+(x+2)^{2} & =625
\end{aligned}
$$

Notice that $625=25^{2}$.
Since x and y are both integers, then the left side of the given equation is the sum of two perfect squares. Since any perfect square is non-negative, then each of these perfect squares is at most $625=25^{2}$.
The pairs of perfect squares that sum to 625 are 625 and 0,576 and 49 , and 400 and 225 .
Therefore, $(3 x-y)^{2}$ and $(x+2)^{2}$ are equal to 25^{2} and 0^{2} in some order, or 24^{2} and 7^{2} in some order, or 20^{2} and 15^{2} in some order.
Furthermore, $3 x-y$ and $x+2$ are equal to ± 25 and ± 0 in some order, or ± 24 and ± 7 in some order, or ± 20 and ± 15 in some order.
Since $x \geq 0$, then $x+2 \geq 2$. So we need to consider when $x+2$ is equal to $25,24,7,20$, or 15 .

- If $x+2=25$, then $x=23$. Also, $3 x-y=0$. Thus, $y=69$. Since $x \geq 0$ and $y \geq 0$, $(23,69)$ is a valid ordered pair.
- If $x+2=24$, then $x=22$. Also, $3 x-y=7$ or $3 x-y=-7$.

When $3 x-y=7$, we find $y=59$. Since $x \geq 0$ and $y \geq 0,(22,59)$ is a valid ordered pair. When $3 x-y=-7$, we find $y=73$. Since $x \geq 0$ and $y \geq 0,(22,73)$ is a valid ordered pair.

- If $x+2=7$, then $x=5$. Also, $3 x-y=24$ or $3 x-y=-24$.

When $3 x-y=24$, we find $y=-9$. Since $y<0$, this does not lead to a valid ordered pair. When $3 x-y=-24$, we find $y=39$. Since $x \geq 0$ and $y \geq 0,(5,39)$ is a valid ordered pair.

- If $x+2=20$, then $x=18$. Also, $3 x-y=15$ or $3 x-y=-15$.

When $3 x-y=15$, we find $y=39$. Since $x \geq 0$ and $y \geq 0,(18,39)$ is a valid ordered pair. When $3 x-y=-15$, we find $y=69$. Since $x \geq 0$ and $y \geq 0,(18,69)$ is a valid ordered pair.

- If $x+2=15$, then $x=13$. Also, $3 x-y=20$ or $3 x-y=-20$.

When $3 x-y=20$, we find $y=19$. Since $x \geq 0$ and $y \geq 0,(13,19)$ is a valid ordered pair. When $3 x-y=-20$, we find $y=59$. Since $x \geq 0$ and $y \geq 0,(13,59)$ is a valid ordered pair.

Therefore, the ordered pairs of non-negative integers that satisfy the equation are $(23,69)$, $(22,59),(22,73),(5,39),(18,39),(18,69),(13,19)$, and $(13,59)$.

