

Problem of the Week

Problem D and Solution
How Many Fives?

Problem

The product of the first seven positive integers is equal to

$$
7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=5040
$$

Mathematicians will write this product as 7 !. This is read as " 7 factorial". So, $7!=7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=5040$.

This factorial notation can be used with any positive integer. For example, $11!=11 \times 10 \times 9 \times \cdots \times 3 \times 2 \times 1=39916800$. The three dots " \ldots " represent the product of the integers between 9 and 3 .

Suppose $N=1000$!. That is,

$$
N=1000!=1000 \times 999 \times 998 \times 997 \times \cdots \times 3 \times 2 \times 1
$$

Note that N is divisible by $5,25,125$, and 625 . Each of these factors is a power of 5 . That is, $5=5^{1}, 25=5^{2}, 125=5^{3}$, and $625=5^{4}$.

Determine the largest power of 5 that divides N.

Solution

Solution 1

In order to determine the largest power of 5 that divides N, we need to count the number of times the factor 5 appears in the prime factorization of N.

Since N is equal to the product of the integers from 1 to 1000 , let's first look at which of these integers are divisible by 5 . The integers from 1 to 1000 that are divisible by 5 are $5,10,15,20, \ldots, 990,995,1000$. That is, a total of $\frac{1000}{5}=200$ integers from 1 to 1000 are divisible by 5 .

Each integer that is a multiple of 25 will add an additional factor of 5 , since $25=5 \times 5$. There are $\frac{1000}{25}=40$ integers from 1 to 1000 that are multiples of 25 . These integers give another 40 factors of 5 bringing the total to $200+40=240$.

Each integer that is a multiple of 125 will add an additional factor of 5 . This is because $125=5 \times 5 \times 5$, and two of the factors have already been counted when we looked at 5 and 25 . There are $\frac{1000}{125}=8$ integers from 1 to 1000 that are multiples of 125 . These integers give another 8 factors of 5 bringing the total to $240+8=248$.

Each integer that is a multiple of 625 will add an additional factor of 5 . This is because $625=5 \times 5 \times 5 \times 5$, and three of the factors have already been counted when we looked at 5 , 25 and 125 . There is 1 integer from 1 to 1000 that is a multiple of 625 , namely, 625 . This integer gives another factor of 5 bringing the total to $248+1=249$.
The next power of 5 is $5^{5}=3125>1000$, so we have counted all factors of 5 in 1000 !.
Thus, the prime factorization of N contains exactly 249 factors of 5 . Therefore, the largest power of 5 that divides N is 5^{249}.

Solution 2

There are many similarities between Solution 1 and the following solution. In this solution we will divide out factors of 5 until there are none left.

1. In the integers from 1 to 1000 , there are $\frac{1000}{5}=200$ integers that are divisible by 5 , namely, $5,10,15, \ldots, 990,995,1000$. If we divide each of these integers by 5 , we obtain the second list $1,2,3, \ldots, 198,199,200$.
2. This second list contains $\frac{200}{5}=40$ integers that are divisible by 5 , namely, $5,10,15, \ldots, 190,195,200$. If we divide each of these integers by 5 , we obtain the third list $1,2,3, \ldots, 38,39,40$.
3. This third list contains $\frac{40}{5}=8$ integers that are divisible by 5 , namely, $5,10,15,20,25,30,35,40$. If we divide each of these integers by 5 , we obtain the fourth list $1,2,3,4,5,6,7,8$.
4. This fourth list contains 1 integer that is divisible by 5 , namely the integer 5 .

In total, there are $200+40+8+1=249$ factors of 5 in 1000 !. Therefore, the largest power of 5 that divides N is 5^{249}.

An interpretation of what has happened is in order. When we created the first list of multiples of 5 , we discovered that there were 200 integers from 1 to 1000 that are divisible by 5 . When we created the second list of multiples of 5 , we were actually counting the 40 integers from 1 to 1000 that are divisible by 25 . When we created the third list of multiples of 5 , we were actually counting the 8 integers from 1 to 1000 that are divisible by 125 . And finally, when we created the fourth list of multiples of 5 , we were actually counting the 1 integer from 1 to 1000 that is divisible by 625 .

