Problem of the Week Problem D and Solution What's in That Square?

Problem

Fourteen squares are placed in a row forming the grid below. Each square is to be filled with a positive integer, according to the following rules.

1. The product of any four integers in adjacent squares is 120 .
2. Integers may appear more than once in the grid.

Four of the squares are already filled with a positive integer, as shown. Determine all possible values of x.

		2			4			x			3		

Solution

In both solutions, let a_{1} be the positive integer in the first square, a_{2} the positive integer in the second square, a_{3} be the positive integer in the third square, a_{4} the positive integer in the fourth square, and so on.

Solution 1

Consider squares 3 to 6 . Since the product of any four adjacent integers is 120 , we have $2 \times a_{4} \times a_{5} \times 4=120$. Therefore, $a_{4} \times a_{5}=\frac{120}{2 \times 4}=15$. Since a_{4} and a_{5} are positive integers, there are four possibilities: $a_{4}=1$ and $a_{5}=15$, or $a_{4}=15$ and $a_{5}=1$, or $a_{4}=3$ and $a_{5}=5$, or $a_{4}=5$ and $a_{5}=3$.

In each of the four cases, we will have $a_{7}=2$. We can see why by considering squares 4 to 7 . We have $a_{4} \times a_{5} \times 4 \times a_{7}=120$, or $15 \times 4 \times a_{7}=120$, since $a_{4} \times a_{5}=15$. Therefore, $a_{7}=\frac{120}{15 \times 4}=2$.

- Case 1: $a_{4}=1$ and $a_{5}=15$

Consider squares 5 to 8 . We have $a_{5} \times 4 \times a_{7} \times a_{8}=120$, or $15 \times 4 \times 2 \times a_{8}=120$, or $a_{8}=\frac{120}{15 \times 4 \times 2}=1$.
Next, consider squares 6 to 9 . We have $4 \times a_{7} \times a_{8} \times x=120$, or $4 \times 2 \times 1 \times x=120$, or $x=\frac{120}{4 \times 2}=15$.
Let's check that $x=15$ satisfies the only other condition in the problem that we have not yet used, that is $a_{12}=3$.
Consider squares 9 to 12 . If $x=15$ and $a_{12}=3$, then $a_{10} \times a_{11}=\frac{120}{15 \times 3}=\frac{8}{3}$. But a_{10} and a_{11} must both be integers, so is not possible for $a_{10} \times a_{11}=\frac{8}{3}$. Therefore, it must not be possible for $a_{4}=1$ and $a_{5}=15$, and so we find that there is no solution for x in this case.

- Case 2: $a_{4}=15$ and $a_{5}=1$

Consider squares 5 to 8 . We have $a_{5} \times 4 \times a_{7} \times a_{8}=120$, or $1 \times 4 \times 2 \times a_{8}=120$, or $a_{8}=\frac{120}{4 \times 2}=15$.

Next, consider squares 6 to 9 . We have $4 \times a_{7} \times a_{8} \times x=120$, or $x=\frac{120}{4 \times 2 \times 15}=1$.
Let's check that $x=1$ satisfies the only other condition in the problem that we have not yet used, that is $a_{12}=3$.
Consider squares 7 to 10 . Since $a_{7}=2, a_{8}=15$, and $x=1$, then $a_{10}=\frac{120}{2 \times 15 \times 1}=4$.
Similarly, $a_{11}=\frac{120}{15 \times 1 \times 4}=2$. Then we have $x \times a_{10} \times a_{11} \times a_{12}=1 \times 4 \times 2 \times 3=24 \neq 120$.
Therefore, it is not possible for $a_{4}=15$ and $a_{5}=1$. There is no solution for x in this case.

- Case 3: $a_{4}=3$ and $a_{5}=5$

Consider squares 5 to 8 . We have $a_{5} \times 4 \times a_{7} \times a_{8}=120$, or $5 \times 4 \times 2 \times a_{8}=120$, or $a_{8}=\frac{120}{5 \times 4 \times 2}=3$.
Next, consider squares 6 to 9 . We have $4 \times a_{7} \times a_{8} \times x=120$, or $x=\frac{120}{4 \times 2 \times 3}=5$.
Let's check that $x=5$ satisfies the only other condition in the problem that we have not yet used, that is $a_{12}=3$.
Consider squares 7 to 10 . Since $a_{7}=2, a_{8}=3$, and $x=5$, then $a_{10}=\frac{120}{2 \times 3 \times 5}=4$.
Similarly, $a_{11}=\frac{120}{3 \times 5 \times 4}=2$. Then we have $x \times a_{10} \times a_{11} \times a_{12}=5 \times 4 \times 2 \times a_{12}=120$, so $a_{12}=\frac{120}{5 \times 4 \times 2}=3$. Therefore, the condition that $a_{12}=3$ is satisfied in the case where $a_{4}=3$ and $a_{5}=5$. If we continue to fill out the entries in the squares, we obtain the entries shown in the diagram below.

5	4	2	3	5	4	2	3	5	4	2	3	5	4

We see that $x=5$ is a possible solution. However, is it the only solution? We have one final case to check.

- Case 4: $a_{4}=5$ and $a_{5}=3$

Consider squares 5 to 8 . We have $a_{5} \times 4 \times a_{7} \times a_{8}=120$, or $3 \times 4 \times 2 \times a_{8}=120$, or $a_{8}=\frac{120}{3 \times 4 \times 2}=5$.
Next, consider squares 6 to 9 . We have $4 \times a_{7} \times a_{8} \times x=120$, or $x=\frac{120}{4 \times 2 \times 5}=3$.
Let's check that $x=3$ satisfies the only other condition in the problem that we have not yet used, that is $a_{12}=3$.
Consider squares 9 to 12 . If $x=3$ and $a_{12}=3$, then $a_{10} \times a_{11}=\frac{120}{3 \times 3}=\frac{40}{3}$. But a_{10} and a_{11} must both be integers, so it is not possible for $a_{10} \times a_{11}=\frac{40}{3}$. Therefore, it must not be possible for $a_{4}=5$ and $a_{5}=3$, and so we find that there is no solution for x in this case.

Therefore, the only possible value for x is $x=5$.

Solution 2

You may have noticed a pattern for the a_{i} 's in Solution 1. We will explore this pattern.
Since the product of any four adjacent integers is $120, a_{1} a_{2} a_{3} a_{4}=a_{2} a_{3} a_{4} a_{5}=120$. Since both sides are divisible by $a_{2} a_{3} a_{4}$, and each is a positive integer, then $a_{1}=a_{5}$.
Similarly, $a_{2} a_{3} a_{4} a_{5}=a_{3} a_{4} a_{5} a_{6}=120$, and so $a_{2}=a_{6}$.
In general, $a_{n} a_{n+1} a_{n+2} a_{n+3}=a_{n+1} a_{n+2} a_{n+3} a_{n+4}$, and so $a_{n}=a_{n+4}$.
We can use this along with the given information to fill out the entries in the squares as follows:

x	4	2	3	x	4	2	3	x	4	2	3	x	4

Therefore, $4 \times 2 \times 3 \times x=120$ and so $x=\frac{120}{4 \times 2 \times 3}=5$.

