Problem of the Week Problem D and Solution What's in That Square?

Problem

Fourteen squares are placed in a row forming the grid below. Each square is to be filled with a positive integer, according to the following rules.

- 1. The product of any four integers in adjacent squares is 120.
- 2. Integers may appear more than once in the grid.

Four of the squares are already filled with a positive integer, as shown. Determine all possible values of x.

		2			4			x			3		
--	--	---	--	--	---	--	--	---	--	--	---	--	--

Solution

In both solutions, let a_1 be the positive integer in the first square, a_2 the positive integer in the second square, a_3 be the positive integer in the third square, a_4 the positive integer in the fourth square, and so on.

Solution 1

Consider squares 3 to 6. Since the product of any four adjacent integers is 120, we have $2 \times a_4 \times a_5 \times 4 = 120$. Therefore, $a_4 \times a_5 = \frac{120}{2 \times 4} = 15$. Since a_4 and a_5 are positive integers, there are four possibilities: $a_4 = 1$ and $a_5 = 15$, or $a_4 = 15$ and $a_5 = 1$, or $a_4 = 3$ and $a_5 = 5$, or $a_4 = 5$ and $a_5 = 3$.

In each of the four cases, we will have $a_7 = 2$. We can see why by considering squares 4 to 7. We have $a_4 \times a_5 \times 4 \times a_7 = 120$, or $15 \times 4 \times a_7 = 120$, since $a_4 \times a_5 = 15$. Therefore, $a_7 = \frac{120}{15 \times 4} = 2$.

- Case 1: $a_4 = 1$ and $a_5 = 15$ Consider squares 5 to 8. We have $a_5 \times 4 \times a_7 \times a_8 = 120$, or $15 \times 4 \times 2 \times a_8 = 120$, or $a_8 = \frac{120}{15 \times 4 \times 2} = 1$. Next, consider squares 6 to 9. We have $4 \times a_7 \times a_8 \times x = 120$, or $4 \times 2 \times 1 \times x = 120$, or $x = \frac{120}{4 \times 2} = 15$. Let's check that x = 15 satisfies the only other condition in the problem that we have not yet used, that is $a_{12} = 3$. Consider squares 9 to 12. If x = 15 and $a_{12} = 3$, then $a_{10} \times a_{11} = \frac{120}{15 \times 3} = \frac{8}{3}$. But a_{10} and a_{11} must both be integers, so is not possible for $a_{10} \times a_{11} = \frac{8}{3}$. Therefore, it must not be possible for $a_4 = 1$ and $a_5 = 15$, and so we find that there is no solution for x in this case.
- Case 2: $a_4 = 15$ and $a_5 = 1$ Consider squares 5 to 8. We have $a_5 \times 4 \times a_7 \times a_8 = 120$, or $1 \times 4 \times 2 \times a_8 = 120$, or $a_8 = \frac{120}{4 \times 2} = 15$.

CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Next, consider squares 6 to 9. We have $4 \times a_7 \times a_8 \times x = 120$, or $x = \frac{120}{4 \times 2 \times 15} = 1$. Let's check that x = 1 satisfies the only other condition in the problem that we have not yet used, that is $a_{12} = 3$. Consider squares 7 to 10. Since $a_7 = 2$, $a_8 = 15$, and x = 1, then $a_{10} = \frac{120}{2 \times 15 \times 1} = 4$. Similarly, $a_{11} = \frac{120}{15 \times 1 \times 4} = 2$. Then we have $x \times a_{10} \times a_{11} \times a_{12} = 1 \times 4 \times 2 \times 3 = 24 \neq 120$. Therefore, it is not possible for $a_4 = 15$ and $a_5 = 1$. There is no solution for x in this case. • Case 3: $a_4 = 3$ and $a_5 = 5$ Consider squares 5 to 8. We have $a_5 \times 4 \times a_7 \times a_8 = 120$, or $5 \times 4 \times 2 \times a_8 = 120$, or $a_8 = \frac{120}{5 \times 4 \times 2} = 3.$ Next, consider squares 6 to 9. We have $4 \times a_7 \times a_8 \times x = 120$, or $x = \frac{120}{4 \times 2 \times 3} = 5$. Let's check that x = 5 satisfies the only other condition in the problem that we have not yet used, that is $a_{12} = 3$. Consider squares 7 to 10. Since $a_7 = 2$, $a_8 = 3$, and x = 5, then $a_{10} = \frac{120}{2 \times 3 \times 5} = 4$. Similarly, $a_{11} = \frac{120}{3 \times 5 \times 4} = 2$. Then we have $x \times a_{10} \times a_{11} \times a_{12} = 5 \times 4 \times 2 \times a_{12} = 120$, so $a_{12} = \frac{120}{5 \times 4 \times 2} = 3$. Therefore, the condition that $a_{12} = 3$ is satisfied in the case where $a_4 = 3$ and $a_5 = 5$. If we continue to fill out the entries in the squares, we obtain the entries shown in the diagram below.

5	4	2	3	5	4	2	3	5	4	2	3	5	4
---	---	---	---	---	---	---	---	---	---	---	---	---	---

We see that x = 5 is a possible solution. However, is it the only solution? We have one final case to check.

• Case 4: $a_4 = 5$ and $a_5 = 3$

Consider squares 5 to 8. We have $a_5 \times 4 \times a_7 \times a_8 = 120$, or $3 \times 4 \times 2 \times a_8 = 120$, or $a_8 = \frac{120}{3 \times 4 \times 2} = 5$.

Next, consider squares 6 to 9. We have $4 \times a_7 \times a_8 \times x = 120$, or $x = \frac{120}{4 \times 2 \times 5} = 3$. Let's check that x = 3 satisfies the only other condition in the problem that we have not yet used, that is $a_{12} = 3$.

Consider squares 9 to 12. If x = 3 and $a_{12} = 3$, then $a_{10} \times a_{11} = \frac{120}{3 \times 3} = \frac{40}{3}$. But a_{10} and a_{11} must both be integers, so it is not possible for $a_{10} \times a_{11} = \frac{40}{3}$. Therefore, it must not be possible for $a_4 = 5$ and $a_5 = 3$, and so we find that there is no solution for x in this case.

Therefore, the only possible value for x is x = 5.

Solution 2

You may have noticed a pattern for the a_i 's in Solution 1. We will explore this pattern.

Since the product of any four adjacent integers is 120, $a_1a_2a_3a_4 = a_2a_3a_4a_5 = 120$. Since both sides are divisible by $a_2a_3a_4$, and each is a positive integer, then $a_1 = a_5$.

Similarly, $a_2a_3a_4a_5 = a_3a_4a_5a_6 = 120$, and so $a_2 = a_6$.

In general, $a_n a_{n+1} a_{n+2} a_{n+3} = a_{n+1} a_{n+2} a_{n+3} a_{n+4}$, and so $a_n = a_{n+4}$.

We can use this along with the given information to fill out the entries in the squares as follows:

x	4	2	3	x	4	2	3	x	4	2	3	x	4
---	---	---	---	---	---	---	---	---	---	---	---	---	---

Therefore, $4 \times 2 \times 3 \times x = 120$ and so $x = \frac{120}{4 \times 2 \times 3} = 5$.