# Problem of the Week Problem D and Solution <br> Layover Between the Trips 

## Problem

A plane travels from Calgary, AB to Grande Prairie, AB. The total flight time, including takeoff and landing, is 1 hour and 40 minutes. The return flight takes the same route and time. The average speed for these two flights is $500 \mathrm{~km} / \mathrm{h}$.

After a brief layover in Grande Prairie, the average speed of this entire round trip (including the two flights and the layover in between) becomes $425 \mathrm{~km} / \mathrm{h}$. How long was the layover?

## Solution

Let $t$ be the length of the layover, in hours.
The plane travels from Calgary to Grande Prairie in 1 hour 40 minutes at a speed of $500 \mathrm{~km} / \mathrm{h}$. Using the formula distance $=$ speed $\times$ time, the distance from Calgary to Grande Prairie must be $500 \frac{\mathrm{~km}}{\mathrm{~h}} \times 1 \frac{2}{3} \mathrm{~h}=500 \times \frac{5}{3}=\frac{2500}{3} \mathrm{~km}$. Therefore, for the two-way trip, the plane travels $2 \times \frac{2500}{3}=\frac{5000}{3} \mathrm{~km}$.
The length of time of the entire two-way trip is the time of the two flights plus the layover time. Therefore, the total length of time of the trip is $\frac{5}{3}+\frac{5}{3}+t=\frac{10}{3}+t$ hours.
Since the average speed of the entire two-way trip is $425 \mathrm{~km} / \mathrm{h}$, using the formula distance $=$ speed $\times$ time, we have

$$
\begin{aligned}
\frac{5000}{3} & =425 \times\left(\frac{10}{3}+t\right) \\
\frac{10}{3}+t & =\frac{5000}{3 \times 425} \\
t & =\frac{200}{51}-\frac{10}{3} \\
& =\frac{200}{51}-\frac{170}{51} \\
& =\frac{10}{17}
\end{aligned}
$$

Therefore, the layover was $\frac{10}{17}$ hours, or approximately 35 minutes.

