

# Problem of the Week <br> Problem D and Solution 

The Other Area

## Problem

Two circles, one with centre $A$ and one with centre $B$, intersect at points $P$ and $Q$ such that $\angle P A Q=60^{\circ}$ and $\angle P B Q=90^{\circ}$. If the area of the circle with centre $A$ is $48 \mathrm{~m}^{2}$, what is the area of the circle with centre $B$ ?

## Solution

Let $c$ be the radius of the circle with centre $A$, in metres, and $d$ be the radius of the circle with centre $B$, in metres. Then join $P$ to $Q$.
We will determine the length of $P Q$ in terms of $c$ and then in terms of $d$ in order to find a relation-
 ship between $c$ and $d$.
Consider $\triangle A P Q$. Since $A P=A Q=c, \triangle A P Q$ is isosceles and so
$\angle A P Q=\angle A Q P$. Since $\angle P A Q=60^{\circ}, \angle A P Q=\angle A Q P=\frac{180^{\circ}-60^{\circ}}{2}=60^{\circ}$.
Therefore, $\triangle A P Q$ is equilateral and $P Q=A P=A Q=c$.
Consider $\triangle B P Q$. We are given that $\angle P B Q=90^{\circ}$. Therefore, $\triangle B P Q$ is a right-angled triangle. The Pythagorean theorem tells us that
$P Q^{2}=B P^{2}+B Q^{2}=d^{2}+d^{2}=2 d^{2}$.
We have $P Q=c$ and $P Q^{2}=2 d^{2}$. Therefore, $c^{2}=2 d^{2}$.
The area of the circle with centre $B$ and radius $d$ is $\pi d^{2}$.
The area of the circle with centre $A$ and radius $c$ is $\pi c^{2}$. We know this area is equal to $48 \mathrm{~m}^{2}$. Then,

$$
\begin{aligned}
& 48=\pi c^{2} \\
& 48=\pi\left(2 d^{2}\right) \\
& 48=2 \pi d^{2} \\
& 24=\pi d^{2}
\end{aligned}
$$

Therefore, the area of the circle with centre $B$ is $24 \mathrm{~m}^{2}$.

