

Problem of the Week Problem D and Solution The Other Area

Problem

Two circles, one with centre A and one with centre B, intersect at points P and Q such that $\angle PAQ = 60^{\circ}$ and $\angle PBQ = 90^{\circ}$. If the area of the circle with centre A is 48 m^2 , what is the area of the circle with centre B?

Solution

Let c be the radius of the circle with centre A, in metres, and d be the radius of the circle with centre B, in metres. Then join P to Q.

We will determine the length of PQ in terms of cand then in terms of d in order to find a relationship between c and d.

Consider $\triangle APQ$. Since AP = AQ = c, $\triangle APQ$ is isosceles and so $\angle APQ = \angle AQP$. Since $\angle PAQ = 60^{\circ}$, $\angle APQ = \angle AQP = \frac{180^{\circ} - 60^{\circ}}{2} = 60^{\circ}$. Therefore, $\triangle APQ$ is equilateral and PQ = AP = AQ = c.

Consider $\triangle BPQ$. We are given that $\angle PBQ = 90^{\circ}$. Therefore, $\triangle BPQ$ is a right-angled triangle. The Pythagorean theorem tells us that $PQ^2 = BP^2 + BQ^2 = d^2 + d^2 = 2d^2$.

We have PQ = c and $PQ^2 = 2d^2$. Therefore, $c^2 = 2d^2$.

The area of the circle with centre B and radius d is πd^2 .

The area of the circle with centre A and radius c is πc^2 . We know this area is equal to 48 m^2 . Then,

$$48 = \pi c^{2}$$

$$48 = \pi (2d^{2})$$

$$48 = 2\pi d^{2}$$

$$24 = \pi d^{2}$$

Therefore, the area of the circle with centre B is 24 m^2 .