

Problem of the Week Problem D and Solution

 Two Birds

Problem

Katya owns two cockatoos, an older white cockatoo and a younger Galah cockatoo. At present, the sum of the cockatoos' ages is 44 years. In n years, where $n>0$, the white cockatoo's age will be four times the Galah cockatoo's age. If n is an integer, determine the possible present ages of each cockatoo.

Solution

Let g represent the present age of the Galah cockatoo and w represent the present age of the white cockatoo. Since the sum of their present ages is 44, we have $g+w=44$ or $w=44-g$.

In n years, the Galah cockatoo will be $(g+n)$ years old and the white cockatoo will be $(44-g+n)$ years old. At that time the white cockatoo will be four times older than the Galah cockatoo. Therefore,

$$
\begin{aligned}
4(g+n) & =44-g+n \\
4 g+4 n & =44-g+n \\
5 g+3 n & =44 \\
g & =\frac{44-3 n}{5}
\end{aligned}
$$

We are looking for integer values of n so that $44-3 n$ is divisible by 5 .
When $n=3, g=\frac{44-3 n}{5}=\frac{44-3(3)}{5}=\frac{35}{5}=7$. When $g=7, w=44-g=44-7=37$.
When $n=8, g=\frac{44-3 n}{5}=\frac{44-3(8)}{5}=\frac{20}{5}=4$. When $g=4, w=44-g=44-4=40$.
When $n=13, g=\frac{44-3 n}{5}=\frac{44-3(13)}{5}=\frac{5}{5}=1$. When $g=1, w=44-g=44-1=43$.
When $n=18, g=\frac{44-3 n}{5}=\frac{44-3(18)}{5}=\frac{-10}{5}=-2$. Since $g<0, n=16$ does not produce a valid age for the Galah cockatoo. No higher value of n would produce a value of $g>0$.
No integer values of n between 0 and 18, other than 3,8 , and 13 , produce a multiple of 5 when substituted into $44-3 n$.

If today the white cockatoo is 37 and the Galah cockatoo is 7 , then in 3 years the white cockatoo will be 40 and the Galah cockatoo will be 10 . The white cockatoo will be four times older than the Galah cockatoo since $4 \times 10=40$.

If today the white cockatoo is 40 and the Galah cockatoo is 4 , then in 8 years the white cockatoo will be 48 and the Galah cockatoo will be 12. The white cockatoo will be four times older than the Galah cockatoo since $4 \times 12=48$.

If today the white cockatoo is 43 and the Galah cockatoo is 1 , then in 13 years the white cockatoo will be 56 and the Galah cockatoo will be 14 . The white cockatoo will be four times older than the Galah cockatoo since $4 \times 14=56$.

Therefore, the possible present ages for the white cockatoo and Galah cockatoo are 37 and 7, or 40 and 4 , or 43 and 1 .

