

Problem of the Week Problem D and Solution
Find the Largest Area

Problem

Rectangle $A C E G$ has B on $A C$ and F on $E G$ such that $B F$ is parallel to $C E$. Also, D is on $C E$ and H is on $A G$ such that $H D$ is parallel to $A C$, and $B F$ intersects $H D$ at J. The area of rectangle $A B J H$ is $6 \mathrm{~cm}^{2}$ and the area of rectangle $J D E F$ is $15 \mathrm{~cm}^{2}$.
If the dimensions of rectangles $A B J H$ and $J D E F$, in centimetres, are integers, then determine the largest possible area of rectangle $A C E G$.

Solution

Let $A B=x, A H=y, J D=a$ and $J F=b$. Then,

$$
\begin{aligned}
& H J=G F \\
& B J=A B=x \\
&=A H=y \\
& B C=F E=J D=a \\
& H G=D E=J F=b
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
\operatorname{area}(A C E G) & =\operatorname{area}(A B J H)+\operatorname{area}(B C D J)+\operatorname{area}(J D E F)+\operatorname{area}(H J F G) \\
& =6+y a+15+x b \\
& =21+y a+x b
\end{aligned}
$$

Since the area of rectangle $A B J H$ is $6 \mathrm{~cm}^{2}$ and the side lengths of $A B J H$ are integers, then the side lengths must be 1 and 6 or 2 and 3 . That is, $x=1 \mathrm{~cm}$ and $y=6 \mathrm{~cm}, x=6 \mathrm{~cm}$ and $y=1 \mathrm{~cm}, x=2 \mathrm{~cm}$ and $y=3 \mathrm{~cm}$, or $x=3 \mathrm{~cm}$ and $y=2 \mathrm{~cm}$.
Since the area of rectangle $J D E F$ is $15 \mathrm{~cm}^{2}$ and the side lengths of $J D E F$ are integers, then the side lengths must be 1 and 15 or 3 and 5 . That is, $a=1 \mathrm{~cm}$ and $b=15 \mathrm{~cm}, a=15 \mathrm{~cm}$ and $b=1 \mathrm{~cm}, a=3 \mathrm{~cm}$ and $b=5 \mathrm{~cm}$, or $a=5 \mathrm{~cm}$ and $b=3 \mathrm{~cm}$.

To maximize the area, we need to pick the values of x, y, a, and b which make $y a+x b$ as large as possible. We will now break into cases based on the possible side lengths of $A B J H$ and $J D E F$ and calculate the area of $A C E G$ in each case. We do not need to try all 16 possible pairings, because trying $x=1 \mathrm{~cm}$ and $y=6 \mathrm{~cm}$ with the four possibilities of a and b will give the same 4 areas, in some order, as trying $x=6 \mathrm{~cm}$ and $y=1 \mathrm{~cm}$ with the four possibilities of a and b. Similarly, trying $x=2 \mathrm{~cm}$ and $y=3 \mathrm{~cm}$ with the four possibilities of a and b will give the same 4 areas, in some order, as trying $x=3 \mathrm{~cm}$ and $y=2 \mathrm{~cm}$ with the four possibilities of a and b. (As an extension, we will leave it to you to think about why this is the case.)

- Case 1: $x=1 \mathrm{~cm}, y=6 \mathrm{~cm}, a=1 \mathrm{~cm}, b=15 \mathrm{~cm}$

Then $\operatorname{area}(A C E G)=21+y a+x b=21+6(1)+1(15)=42 \mathrm{~cm}^{2}$.

- Case 2: $x=1 \mathrm{~cm}, y=6 \mathrm{~cm}, a=15 \mathrm{~cm}, b=1 \mathrm{~cm}$

Then $\operatorname{area}(A C E G)=21+y a+x b=21+6(15)+1(1)=112 \mathrm{~cm}^{2}$.

- Case 3: $x=1 \mathrm{~cm}, y=6 \mathrm{~cm}, a=3 \mathrm{~cm}, b=5 \mathrm{~cm}$

Then $\operatorname{area}(A C E G)=21+y a+x b=21+6(3)+1(5)=44 \mathrm{~cm}^{2}$.

- Case 4: $x=1 \mathrm{~cm}, y=6 \mathrm{~cm}, a=5 \mathrm{~cm}, b=3 \mathrm{~cm}$

Then $\operatorname{area}(A C E G)=21+y a+x b=21+6(5)+1(3)=54 \mathrm{~cm}^{2}$.

- Case 5: $x=2 \mathrm{~cm}, y=3 \mathrm{~cm}, a=1, b=15 \mathrm{~cm}$

Then $\operatorname{area}(A C E G)=21+y a+x b=21+3(1)+2(15)=54 \mathrm{~cm}^{2}$.

- Case 6: $x=2 \mathrm{~cm}, y=3 \mathrm{~cm}, a=15, b=1 \mathrm{~cm}$

Then $\operatorname{area}(A C E G)=21+y a+x b=21+3(15)+2(1)=68 \mathrm{~cm}^{2}$.

- Case 7: $x=2 \mathrm{~cm}, y=3 \mathrm{~cm}, a=3, b=5 \mathrm{~cm}$

Then area $(A C E G)=21+y a+x b=21+3(3)+2(5)=40 \mathrm{~cm}^{2}$.

- Case 8: $x=2 \mathrm{~cm}, y=3 \mathrm{~cm}, a=5, b=3 \mathrm{~cm}$

Then area $(A C E G)=21+y a+x b=21+3(5)+2(3)=42 \mathrm{~cm}^{2}$.

We see that the maximum area is $112 \mathrm{~cm}^{2}$, and occurs when $x=1 \mathrm{~cm}, y=6 \mathrm{~cm}$ and $a=15 \mathrm{~cm}, b=1 \mathrm{~cm}$. It will also occur when $x=6 \mathrm{~cm}, y=1 \mathrm{~cm}$ and $a=1 \mathrm{~cm}, b=15 \mathrm{~cm}$.

The following diagrams show the calculated values placed on the original diagram. The diagram given in the problem was definitely not drawn to scale! Both solutions produce rectangles with dimensions 7 cm by 16 cm , and area $112 \mathrm{~cm}^{2}$.

