

Problem of the Week Problem D and Solution
 Can You C It?

Problem

The line with equation $y=-\frac{3}{4} x+18$ crosses the positive x-axis at point B and the positive y-axis at point A. The origin, O, and points A and B form the vertices of a triangle.
Point $C(r, s)$ lies on the line segment $A B$ such that the area of $\triangle A O B$ is three times the area of $\triangle C O B$.

Determine the values of r and s.

Solution

The equation of the line is written in the form $y=m x+b$, where b is the y-intercept of the line. Thus, the y-intercept of the line with equation $y=-\frac{3}{4}+18$ is 18 , and $O A=18$.

To determine the x-intercept of the line, we set $y=0$ to obtain $0=-\frac{3}{4} x+18$. Solving, we have $\frac{3}{4} x=18$, and so $x=24$. Thus, $O B=24$.
We drop a perpendicular from C to $O B$. The base of $\triangle C O B$ is $O B=24$, and since C has y-coordinate s, the height of $\triangle C O B$ is s.

We now present two solutions to the problem.

Solution 1:

Since $\triangle A O B$ is a right-angled triangle with base $O B=24$ and height $O A=18$, using the formula area $=\frac{\text { base } \times \text { height }}{2}$, we have area of $\triangle A O B=\frac{24 \times 18}{2}=216$.
Since the area of $\triangle A O B$ is three times the area of $\triangle C O B$, area of $\triangle C O B=\frac{1}{3}$ (area of $\left.\triangle A O B\right)=\frac{1}{3}(216)=72$.
Thus, $\triangle C O B$ has area 72 , base $O B=24$, and height s.

Using the formula area $=\frac{\text { base } \times \text { height }}{2}$, we have

$$
\text { area of } \begin{aligned}
\triangle C O B & =\frac{O B \times s}{2} \\
72 & =\frac{24 \times s}{2} \\
72 & =12 s \\
s & =6
\end{aligned}
$$

Since $C(r, s)$ lies on the line with equation $y=-\frac{3}{4} x+18$ and $s=6$, we have

$$
\begin{aligned}
6 & =-\frac{3}{4} r+18 \\
\frac{3}{4} r & =12 \\
r & =16
\end{aligned}
$$

Therefore, $r=16$ and $s=6$.

Solution 2:

$\triangle A O B$ and $\triangle C O B$ have the same base, $O B$. If two triangles have the same base, then the areas of the triangles are proportional to the heights of the triangles.

Since the area of $\triangle A O B$ is three times the area of $\triangle C O B$, then the height of $\triangle A O B$ is three times the height of $\triangle C O B$. In other words, the height of $\triangle C O B$ is $\frac{1}{3}$ the height of $\triangle A O B$.
We know that $\triangle A O B$ has height $O A=18$ and $\triangle C O B$ has height s. Therefore,
$s=\frac{1}{3}(O A)=\frac{1}{3}(18)=6$.
Since $C(r, s)$ lies on the line with equation $y=-\frac{3}{4} x+18$ and $s=6$, we have

$$
\begin{aligned}
6 & =-\frac{3}{4} r+18 \\
\frac{3}{4} r & =12 \\
r & =16
\end{aligned}
$$

Therefore, $r=16$ and $s=6$.
Notice that in the second solution, it was actually unnecessary to find the length of $O B$, as this was never used.

Extension:

Can you find the coordinates of point D on line segment $A B$ so that the area of $\triangle A O D$ is equal to the area of $\triangle C O B$, thus creating three triangles of equal area? How are the points A, D, C, and B related?

