

Problem of the Week Problem D and Solution Can You C It?

Problem

The line with equation $y = -\frac{3}{4}x + 18$ crosses the positive x-axis at point B and the positive y-axis at point A. The origin, O, and points A and B form the vertices of a triangle.

Point C(r, s) lies on the line segment AB such that the area of $\triangle AOB$ is three times the area of $\triangle COB$.

Determine the values of r and s.

Solution

The equation of the line is written in the form y = mx + b, where b is the y-intercept of the line. Thus, the y-intercept of the line with equation $y = -\frac{3}{4} + 18$ is 18, and OA = 18.

To determine the *x*-intercept of the line, we set y = 0 to obtain $0 = -\frac{3}{4}x + 18$. Solving, we have $\frac{3}{4}x = 18$, and so x = 24. Thus, OB = 24.

We drop a perpendicular from C to OB. The base of $\triangle COB$ is OB = 24, and since C has y-coordinate s, the height of $\triangle COB$ is s.

We now present two solutions to the problem.

Solution 1:

Since $\triangle AOB$ is a right-angled triangle with base OB = 24 and height OA = 18, using the formula area = $\frac{\text{base} \times \text{height}}{2}$, we have area of $\triangle AOB = \frac{24 \times 18}{2} = 216$.

Since the area of $\triangle AOB$ is three times the area of $\triangle COB$, area of $\triangle COB = \frac{1}{3}$ (area of $\triangle AOB$) $= \frac{1}{3}(216) = 72$. Thus, $\triangle COB$ has area 72, base OB = 24, and height s. Using the formula area $=\frac{\text{base}\times\text{height}}{2}$, we have

area of
$$\triangle COB = \frac{OB \times s}{2}$$

 $72 = \frac{24 \times s}{2}$
 $72 = 12s$
 $s = 6$

Since C(r, s) lies on the line with equation $y = -\frac{3}{4}x + 18$ and s = 6, we have

$$6 = -\frac{3}{4}r + 18$$
$$\frac{3}{4}r = 12$$
$$r = 16$$

Therefore, r = 16 and s = 6.

Solution 2:

 $\triangle AOB$ and $\triangle COB$ have the same base, OB. If two triangles have the same base, then the areas of the triangles are proportional to the heights of the triangles.

Since the area of $\triangle AOB$ is three times the area of $\triangle COB$, then the height of $\triangle AOB$ is three times the height of $\triangle COB$. In other words, the height of $\triangle COB$ is $\frac{1}{3}$ the height of $\triangle AOB$.

We know that $\triangle AOB$ has height OA = 18 and $\triangle COB$ has height s. Therefore, $s = \frac{1}{3}(OA) = \frac{1}{3}(18) = 6$. Since C(r, s) lies on the line with equation $y = -\frac{3}{4}x + 18$ and s = 6, we have

$$6 = -\frac{3}{4}r + 18$$
$$\frac{3}{4}r = 12$$
$$r = 16$$

Therefore, r = 16 and s = 6.

Notice that in the second solution, it was actually unnecessary to find the length of OB, as this was never used.

EXTENSION:

Can you find the coordinates of point D on line segment AB so that the area of $\triangle AOD$ is equal to the area of $\triangle COB$, thus creating three triangles of equal area? How are the points A, D, C, and B related?